Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
2.
Sci Rep ; 13(1): 9205, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280246

RESUMEN

A custom segmentation workflow was applied to ex vivo high-field MR images of rat brains acquired following in vivo intraventricular contrast agent infusion to generate maps of the perivascular spaces (PVS). The resulting perivascular network segmentations enabled analysis of perivascular connections to the ventricles, parenchymal solute clearance, and dispersive solute transport within PVS. Numerous perivascular connections between the brain surface and the ventricles suggest the ventricles integrate into a PVS-mediated clearance system and raise the possibility of cerebrospinal fluid (CSF) return from the subarachnoid space to the ventricles via PVS. Assuming rapid solute exchange between the PVS and CSF spaces primarily by advection, the extensive perivascular network decreased the mean clearance distance from parenchyma to the nearest CSF compartment resulting in an over 21-fold reduction in the estimated diffusive clearance time scale, irrespective of solute diffusivity. This corresponds to an estimated diffusive clearance time scale under 10 min for amyloid-beta which suggests that the widespread distribution of PVS may render diffusion an effective parenchymal clearance mechanism. Additional analysis of oscillatory solute dispersion within PVS indicates that advection rather than dispersion is likely the primary transport mechanism for dissolved compounds greater than 66 kDa in the long (> 2 mm) perivascular segments identified here, although dispersion may be significant for smaller compounds in shorter perivascular segments.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Ratas , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Espacio Subaracnoideo , Medios de Contraste , Difusión
3.
Ann Neurol ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36511514

RESUMEN

OBJECTIVE: This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting. METHODS: SCA1 or SCA3 mutation carriers and controls (n = 107) underwent MR scanning in the US-European READISCA study to obtain structural, diffusion MRI, and MR spectroscopy data using an advanced protocol at 3T. Morphometric, microstructural, and neurochemical metrics were analyzed blinded to diagnosis and compared between preataxic SCA (n = 11 SCA1, n = 28 SCA3), ataxic SCA (n = 14 SCA1, n = 37 SCA3), and control (n = 17) groups using nonparametric testing accounting for multiple comparisons. MR metrics that were most sensitive to preataxic abnormalities were identified using receiver operating characteristic (ROC) analyses. RESULTS: Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons were prominent in both preataxic groups, when patients did not differ from controls clinically. MR metrics were strongly associated with ataxia symptoms, activities of daily living, and estimated ataxia duration. A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 (ROC area under the curve [AUC] = 0.95), and a microstructural metric was the most sensitive metric to preataxic changes in SCA3 (AUC = 0.92). INTERPRETATION: Changes in cerebellar afferent and efferent pathways underlie the earliest symptoms of both SCAs. MR metrics collected with a harmonized advanced protocol in the multisite trial setting allow detection of disease effects in individuals before ataxia onset with potential clinical trial utility for subject stratification. ANN NEUROL 2022.

4.
Neurobiol Aging ; 102: 32-49, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33765430

RESUMEN

Diffusion MRI (dMRI) has been able to detect early structural changes related to neurological symptoms present in Huntington's disease (HD). However, there is still a knowledge gap to interpret the biological significance at early neuropathological stages. The purpose of this study is two-fold: (i) establish if the combination of Ultra-High Field Diffusion MRI (UHFD-MRI) techniques can add a more comprehensive analysis of the early microstructural changes observed in HD, and (ii) evaluate if early changes in dMRI microstructural parameters can be linked to cellular biomarkers of neuroinflammation. Ultra-high field magnet (16.7T), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) techniques were applied to fixed ex-vivo brains of a preclinical model of HD (R6/1 mice). Fractional anisotropy (FA) was decreased in deep and superficial grey matter (GM) as well as white matter (WM) brain regions with well-known early HD microstructure and connectivity pathology. NODDI parameters associated with the intracellular and extracellular compartment, such as intracellular ventricular fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fractions (IsoVF) were altered in R6/1 mice GM. Further, histological studies in these areas showed that glia cell markers associated with neuroinflammation (GFAP & Iba1) were consistent with the dMRI findings. dMRI can be used to extract non-invasive information of neuropathological events present in the early stages of HD. The combination of multiple imaging techniques represents a better approach to understand the neuropathological process allowing the early diagnosis and neuromonitoring of patients affected by HD.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/patología , Animales , Anisotropía , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Inflamación , Ratones Endogámicos C57BL
5.
Magn Reson Med ; 85(6): 3049-3059, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33576535

RESUMEN

PURPOSE: To determine whether deuterated water (HDO) generated from the metabolism of [2 H7 ]glucose is a sensitive biomarker of cerebral glycolysis and oxidative flux. METHODS: A bolus of [2 H7 ]glucose was injected through the tail vein at 1.95 g/kg into Sprague-Dawley rats. A 2 H surface coil was placed on top of the head to record 2 H spectra of the brain every 1.3 minutes to measure glucose uptake and metabolism to HDO, lactate, and glutamate/glutamine. A two-point Dixon method based on a gradient-echo sequence was used to reconstruct deuterated glucose and water (HDO) images selectively. RESULTS: The background HDO signal could be detected and imaged before glucose injection. The 2 H NMR spectra showed arrival of [2 H7 ]glucose and its metabolism in a time-dependent manner. A ratio of the HDO to glutamate/glutamine resonances demonstrates a pseudo-steady state following injection, in which cerebral metabolism dominates wash-in of HDO generated by peripheral metabolism. Brain spectroscopy reveals that HDO generation is linear with lactate and glutamate/glutamine appearance in the appropriate pseudo-steady state window. Selective imaging of HDO and glucose is easily accomplished using a gradient-echo method. CONCLUSION: Metabolic imaging of HDO, as a marker of glucose, lactate, and glutamate/glutamine metabolism, has been shown here for the first time. Cerebral glucose metabolism can be assessed efficiently using a standard gradient-echo sequence that provides superior in-plane resolution compared with CSI-based techniques.


Asunto(s)
Glucosa , Agua , Animales , Encéfalo/diagnóstico por imagen , Isótopos de Carbono , Ácido Glutámico , Glutamina , Ratas , Ratas Sprague-Dawley
6.
Commun Biol ; 4(1): 107, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495588

RESUMEN

Respiratory insufficiency is a leading cause of death due to drug overdose or neuromuscular disease. We hypothesized that a stimulation paradigm using temporal interference (TI) could restore breathing in such conditions. Following opioid overdose in rats, two high frequency (5000 Hz and 5001 Hz), low amplitude waveforms delivered via intramuscular wires in the neck immediately activated the diaphragm and restored ventilation in phase with waveform offset (1 Hz or 60 breaths/min). Following cervical spinal cord injury (SCI), TI stimulation via dorsally placed epidural electrodes uni- or bilaterally activated the diaphragm depending on current and electrode position. In silico modeling indicated that an interferential signal in the ventral spinal cord predicted the evoked response (left versus right diaphragm) and current-ratio-based steering. We conclude that TI stimulation can activate spinal motor neurons after SCI and prevent fatal apnea during drug overdose by restoring ventilation with minimally invasive electrodes.


Asunto(s)
Apnea/prevención & control , Diafragma/fisiología , Terapia por Estimulación Eléctrica/métodos , Sobredosis de Opiáceos/complicaciones , Traumatismos de la Médula Espinal/complicaciones , Animales , Apnea/etiología , Femenino , Masculino , Modelos Biológicos , Ratas Sprague-Dawley
7.
NMR Biomed ; 34(5): e4218, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31854045

RESUMEN

The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra-high fields. Across-vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B1 limit of 15 µT by taking advantage of gradient-modulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel-based first and second order B0 shimming and voxel-based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient-modulated pulses considered (GOIA, FOCI and BASSI), GOIA-WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 µT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter-pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE 'Braino' phantom between vendors. High-quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal-to-noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi-site studies with clinical cohorts.


Asunto(s)
Rayos Láser , Imagen por Resonancia Magnética/normas , Adulto , Simulación por Computador , Creatinina/metabolismo , Humanos , Metaboloma , Fantasmas de Imagen , Ondas de Radio , Estándares de Referencia , Relación Señal-Ruido
8.
Animal Model Exp Med ; 3(2): 117-129, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32613171

RESUMEN

OBJECTIVE: Cell structural changes are one of the main features observed during the development of amyotrophic lateral sclerosis (ALS). In this work, we propose the use of diffusion tensor imaging (DTI) metrics to assess specific ultrastructural changes in the central nervous system during the early neurodegenerative stages of ALS. METHODS: Ultra-high field MRI and DTI data at 17.6T were obtained from fixed, excised mouse brains, and spinal cords from ALS (G93A-SOD1) mice. RESULTS: Changes in fractional anisotropy (FA) and linear, planar, and spherical anisotropy ratios (CL, CP, and CS, respectively) of the diffusion eigenvalues were measured in white matter (WM) and gray matter (GM) areas associated with early axonal degenerative processes (in both the brain and the spinal cord). Specifically, in WM structures (corpus callosum, corticospinal tract, and spinal cord funiculi) as the disease progressed, FA, CL, and CP values decreased, whereas CS values increased. In GM structures (prefrontal cortex, hippocampus, and central spinal cord) FA and CP decreased, whereas the CL and CS values were unchanged or slightly smaller. Histological studies of a fluorescent mice model (YFP, G93A-SOD1 mouse) corroborated the early alterations in neuronal morphology and axonal connectivity measured by DTI. CONCLUSIONS: Changes in diffusion tensor shape were observed in this animal model at the early, nonsymptomatic stages of ALS. Further studies of CL, CP, and CS as imaging biomarkers should be undertaken to refine this neuroimaging tool for future clinical use in the detection of the early stages of ALS.

9.
J Magn Reson ; 313: 106720, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32217424

RESUMEN

Switching gradients generate eddy currents and mechanical vibrations of the gradient assembly causing errors in the gradient time integrals. This results in image distortions in k-space and inaccuracies in q-space imaging. The purpose of this work is to develop an MRI based unbiased measurement of the switched gradient impulse response function (sGIRF). A new gradient pattern, called the Tukey windowed Shifted Sine-Integral (Tw-SSI) pulse, is introduced to excite the gradient eigenmodes uniformly over a user-defined bandwidth. A 3D MRI-based method with Hadamard encoding was developed to map the spatiotemporal magnetic field generated after the excitation pulse to obtain the sGIRF for all the three gradient axes simultaneously. Compared to an energy-equivalent traditional trapezoidal pulse, the Tw-SSI pulse is able to excite the weak bandlimited cross-terms of the sGIRF by uniformly distributing the energy across eigenmodes. The developed field mapping method is sensitive enough to capture both the direct and cross-terms in the sGIRF. The various mechanical resonant modes of the gradient coils are also revealed, which were found to last longer than eddy currents in the shielded gradient coil studied. Tunable Tw-SSI pulse offers the flexibility to perform unbiased sGIRF measurements over a bandwidth of interest. Rapid MRI field mapping can be easily implemented in any MRI system. The method may be used to perform gradient pre-emphasis, to evaluate new gradient coil designs, and to characterize higher order shims.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Algoritmos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional
10.
Sci Rep ; 9(1): 11480, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391474

RESUMEN

Investigating the mechanisms by which metabolic wastes are cleared from nervous tissue is important for understanding natural function and the pathophysiology of several neurological disorders including Alzheimer's disease. Recent evidence suggests clearance may be the function of annular spaces around cerebral blood vessels, called perivascular spaces (PVS), through which cerebrospinal fluid (CSF) is transported from the subarachnoid space into brain parenchyma to exchange with interstitial fluid (also known as the glymphatic system). In this work, an MRI-based methodology was developed to reconstruct the PVS network in whole rat brain to better elucidate both PVS uptake and clearance pathways. MR visible tracer (Gd-albumin) was infused in vivo into the CSF-filled lateral ventricle followed by ex vivo high-resolution MR imaging at 17.6 T with an image voxel volume two orders of magnitude smaller than previously reported. Imaged tracer distribution patterns were reconstructed to obtain a more complete brain PVS network. Several PVS connections were repeatedly highlighted across different animals, and new PVS connections between ventricles and different parts of the brain parenchyma were revealed suggesting a possible role for the ventricles as a source or sink for solutes in the brain. In the future, this methodology may be applied to understand changes in the PVS network with disease.


Asunto(s)
Ventrículos Cerebrales/metabolismo , Sistema Glinfático/metabolismo , Imagen por Resonancia Magnética/métodos , Albúminas/administración & dosificación , Albúminas/química , Enfermedad de Alzheimer/patología , Animales , Ventrículos Cerebrales/diagnóstico por imagen , Líquido Cefalorraquídeo/metabolismo , Medios de Contraste/administración & dosificación , Medios de Contraste/química , Azul de Evans/administración & dosificación , Azul de Evans/química , Estudios de Factibilidad , Gadolinio DTPA/administración & dosificación , Gadolinio DTPA/química , Sistema Glinfático/diagnóstico por imagen , Infusiones Intraventriculares , Masculino , Modelos Animales , Ratas , Espacio Subaracnoideo/metabolismo
11.
Front Aging Neurosci ; 11: 117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156423

RESUMEN

For adults age 65 and older, the brain shows acute functional connectivity decreases after total knee arthroplasty with the severity of change predicted by preoperative cognitive function and brain disease burden. The extent of acute structural microstructural brain changes acutely after surgery remains unknown within the literature. For the current study, we report on the severity of acute post-surgery microstructural brain changes as measured by diffusion imaging and free-water analysis. Participants who underwent total knee arthroplasty under general anesthesia and non-surgery peers were part of a federally funded prospective cohort investigation involving participants. Recruitment occurred between 2013 and 2017. Data were collected in outpatient and inpatient settings within a university-affiliated medical center. A total of 232 TKA patients were referred by the study surgeon and contacted for study inclusion. Of these, 78 met inclusion and exclusion criteria and completed assessment. Five participants were excluded due to anesthetic protocol changes (spinal instead of general) with an additional 12 excluded for imaging-related complications. The total included sample size was 61. A total of 127 non-surgery participants were screened with 66 enrolled. One non-surgery participant was excluded for an imaging-related complication. Total knee arthroplasty and general anesthetic protocols were standardized. Participants received preoperative neurocognitive assessment and brain magnetic resonance imaging, with repeat imaging 48 h after surgery or pseudo surgery. Free-water analyses were performed using diffusion weighted images and tract-based spatial statistics with baseline cognitive data used to predict free-water changes. Surgery participants had widespread increases in white matter free-water. Surgery participants with higher cognitive functions as measured by immediate memory and less evidence of brain atrophy and disease (i.e., brain integrity) had greater free-water increase. Non-surgery peers had no free-water change. We interpret the surgery group's free-water change as indicating widespread brain white matter glial response, with greater change indicative of better brain response to the acute surgery/anesthesia experience.

12.
Artículo en Inglés | MEDLINE | ID: mdl-31159586

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease primarily characterized by the progressive impairment of motor functions. However, a significant portion of affected patients develops severe cognitive dysfunction, developing a widespread white (WM) and gray matter (GM) microstructural impairment. The objective of this study is to determine if Gaussian and non-Gaussian diffusion models gathered by ultra-high field diffusion MRI (UHFD-MRI) are an appropriate tool to detect early structural changes in brain white and gray matter in a preclinical model of ALS. ALS brains (G93A-SOD1mice) were scanned in a 16.7 T magnet. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) have shown presymptomatic decrease in axonal organization by Fractional Anisotropy (FA) and neurite content by Intracellular Volume Fraction (ICVF) across deep WM (corpus callosum) as well as superficial (cortex) and deep (hippocampus) GM. Additional diffusion kurtosis imaging (DKI) analysis demonstrated broader and earlier GM reductions in mean kurtosis (MK), possibly related to the decrease in neuronal complexity. Histological validation was obtained by an ALS fluorescent mice reporter (YFP, G93A-SOD1 mice). The combination of DTI, NODDI, and DKI models have proved to provide a more complete assessment of the early microstructural changes in the ALS brain, particularly in areas associated with high cognitive functions. This comprehensive approach should be considered as a valuable tool for the early detection of neuroimaging markers.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Degeneración Nerviosa/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/genética
13.
MAGMA ; 32(4): 461-471, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30771034

RESUMEN

OBJECTIVE: The goal of this work is to study the changes in white matter integrity in R6/2, a well-established animal model of Huntington's disease (HD) that are captured by ex vivo diffusion imaging (DTI) using a high field MRI (17.6 T). MATERIALS AND METHODS: DTI and continuous time random walk (CTRW) models were used to fit changes in the diffusion-weighted signal intensity in the corpus callosum of controls and in R6/2 mice. RESULTS: A significant 13% decrease in fractional anisotropy, a 7% increase in axial diffusion, and a 33% increase in radial diffusion were observed between R6/2 and control mice. No change was observed in the CTRW beta parameter, but a significant decrease in the alpha parameter (- 21%) was measured. Histological analysis of the corpus callosum showed a decrease in axonal organization, myelin alterations, and astrogliosis. Electron microscopy studies demonstrated ultrastructural changes in degenerating axons, such as an increase in tortuosity in the R6/2 mice. CONCLUSIONS: DTI and CTRW diffusion models display quantitative changes associated with the microstructural alterations observed in the corpus callosum of the R6/2 mice. The observed increase in the diffusivity and decrease in the alpha CTRW parameter providing support for the use of these diffusion models for non-invasive detection of white matter alterations in HD.


Asunto(s)
Axones , Imagen de Difusión Tensora , Enfermedad de Huntington/diagnóstico por imagen , Imagen por Resonancia Magnética , Animales , Anisotropía , Cuerpo Calloso/diagnóstico por imagen , Femenino , Masculino , Ratones , Microscopía Fluorescente , Vaina de Mielina , Sustancia Blanca/diagnóstico por imagen
14.
J Magn Reson Imaging ; 49(5): 1322-1332, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30318760

RESUMEN

BACKGROUND: Brainstem gliomas are aggressive and difficult to treat. Growth of these tumors may be characterized with MRI methods. PURPOSE: To visualize longitudinal changes in tumor volume, vascular leakiness, and tissue microstructure in an animal model of brainstem glioma. STUDY TYPE: Prospective animal model. ANIMAL MODEL: Male Sprague-Dawley rats (n = 9) were imaged with 9L gliosarcoma cells infused into the pontine reticular formation of the brainstem. The MRI tumor microenvironment was studied at 3 and 10 days postimplantation of tumor cells. FIELD STRENGTH/SEQUENCE: Diffusion tensor imaging (DTI) and dynamic contrast-enhanced (DCE)-MRI were performed at 4.7T using spin-echo multislice echo planar imaging and gradient echo multislice imaging, respectively. ASSESSMENT: Tumor leakiness was assessed by the forward volumetric transfer constant, Ktrans , estimated from DCE-MRI data. Tumor structure was evaluated with fractional anisotropy (FA) obtained from DTI. Tumor volumes, delineated by a T1 map, T2 -weighted image, FA, and DCE signal enhancement were compared. STATISTICAL TESTS: Changes in the assessed parameters within and across the groups (ie, rats 3 and 10 days post tumor cell implantation) were evaluated with Wilcoxon rank-sum tests. RESULTS: Day 3 tumors were visible mainly on contrast-enhanced images, while day 10 tumors were visible in both contrast-enhanced and diffusion-weighted images. Mean Ktrans at day 10 was 41% lower than at day 3 (P = 0.23). In day 10 tumors, FA was regionally lower in the tumor compared to normal tissue (P = 0.0004), and tumor volume, segmented based on FA map, was significantly smaller (P ≤ 0.05) than that obtained from other contrasts. DATA CONCLUSION: Contrast-enhanced MRI was found to be more sensitive in detecting early-stage tumor boundaries than other contrasts. Areas of the tumor outlined by DCE-MRI and DTI were significantly different. Over the observed period of tumor growth, average vessel leakiness decreased with tumor progression. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;49:1322-1332.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Tronco Encefálico/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Glioma/diagnóstico por imagen , Angiografía por Resonancia Magnética/métodos , Microambiente Tumoral , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley
15.
J Magn Reson ; 299: 49-58, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30579226

RESUMEN

Creeping flows govern many important physiological phenomena such as elevated interstitial fluid flows in tumors, glymphatic flows in the brain, among other applications. However, few methods exist to measure such slow flows non-invasively in optically opaque biological tissues in vivo. Phase-contrast MRI is a velocimetry technique routinely used in the clinic to measure fast flows in biological tissues, such as blood and cerebrospinal fluid (CSF), in the order of cm/s. Use of this technique to encode slower flows is hampered by diffusion weighting and phase error introduced by gradient hardware imperfections. In this study, a new PC-MRI technique is developed using stimulated echo preparation to overcome these challenges. Flows as slow as 1 µm/s are measured and validated using controlled water flow through a pipe at 4.7 T. The error in measured flow rate obtained by integrating the measured velocity over the cross-sectional area of the pipe is less than 10%. The developed method was also able to capture slow natural convection flows appearing in liquids placed inside a horizontal bore magnet. Monitoring the 4D velocity vector field revealed that the natural convection flows decay exponentially with time. This method could be applied in future to study creeping flows, e.g. in tissue.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Líquido Cefalorraquídeo/química , Convección , Líquido Extracelular/diagnóstico por imagen , Humanos , Sistema Linfático/diagnóstico por imagen , Fenómenos Mecánicos , Fantasmas de Imagen , Reología , Agua/química
16.
Epilepsy Behav ; 88: 87-95, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30243111

RESUMEN

Evidence for structural connectivity patterns within the medial temporal lobe derives primarily from postmortem histological studies. In humans and nonhuman primates, the parahippocampal gyrus (PHg) is subdivided into parahippocampal (PHc) and perirhinal (PRc) cortices, which receive input from distinct cortical networks. Likewise, their efferent projections to the entorhinal cortex (ERc) are distinct. The PHc projects primarily to the medial ERc (M-ERc). The PRc projects primarily to the lateral portion of the ERc (L-ERc). Both M-ERc and L-ERc, via the perforant pathway, project to the dentate gyrus and hippocampal (HC) subfields. Until recently, these neural circuits could not be visualized in vivo. Diffusion tensor imaging algorithms have been developed to segment gray matter structures based on probabilistic connectivity patterns. However, these algorithms have not yet been applied to investigate connectivity in the temporal lobe or changes in connectivity architecture related to disease processes. In this study, this segmentation procedure was used to classify ERc gray matter based on PRc, ERc, and HC connectivity patterns in 7 patients with temporal lobe epilepsy (TLE) without hippocampal sclerosis (mean age, 14.86 ±â€¯3.34 years) and 7 healthy controls (mean age, 23.86 ±â€¯2.97 years). Within samples paired t-tests allowed for comparison of ERc connectivity between epileptogenic and contralateral hemispheres. In healthy controls, there were no significant within-group differences in surface area, volume, or cluster number of ERc connectivity-defined regions (CDR). Likewise, in line with histology results, ERc CDR in the control group were well-organized, uniform, and segregated via PRc/PHc afferent and HC efferent connections. Conversely, in TLE, there were significantly more PRc and HC CDR clusters in the epileptogenic than the contralateral hemisphere. The surface area of the PRc CDR was greater, and that of the HC CDRs was smaller, in the epileptogenic hemisphere as well. Further, there was no clear delineation between M-ERc and L-ERc connectivity with PRc, PHc or HC in TLE. These results suggest a breakdown of the spatial organization of PHg-ERc-HC connectivity in TLE. Whether this breakdown is the cause or result of epileptic activity remains an exciting research question.


Asunto(s)
Corteza Entorrinal/patología , Epilepsia del Lóbulo Temporal/patología , Sustancia Gris/patología , Sustancia Blanca/patología , Adolescente , Adulto , Algoritmos , Estudios de Casos y Controles , Niño , Imagen de Difusión Tensora , Corteza Entorrinal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
17.
Transl Neurodegener ; 7: 20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30128146

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a disease characterized by a progressive degeneration of motor neurons leading to paralysis. Our previous MRI diffusion tensor imaging studies detected early white matter changes in the spinal cords of mice carrying the G93A-SOD1 mutation. Here, we extend those studies using ultra-high field MRI (17.6 T) and fluorescent microscopy to investigate the appearance of early structural and connectivity changes in the spinal cords of ALS mice. METHODS: The spinal cords from presymptomatic and symptomatic mice (80 to 120 days of age) were scanned (ex-vivo) using diffusion-weighted MRI. The fractional anisotropy (FA), axial (AD) and radial (RD) diffusivities were calculated for axial slices from the thoracic, cervical and lumbar regions of the spinal cords. The diffusion parameters were compared with fluorescence microscopy and membrane cellular markers from the same tissue regions. RESULTS: At early stages of the disease (day 80) in the lumbar region, we found, a 19% decrease in FA, a 9% decrease in AD and a 35% increase in RD. Similar changes were observed in cervical and thoracic spinal cord regions. Differences between control and ALS mice groups at the symptomatic stages (day 120) were larger. Quantitative fluorescence microscopy at 80 days, demonstrated a 22% reduction in axonal area and a 22% increase in axonal density. Tractography and quantitative connectome analyses measured by edge weights showed a 52% decrease in the lumbar regions of the spinal cords of this ALS mice group. A significant increase in ADC (23.3%) in the ALS mice group was related to an increase in aquaporin markers. CONCLUSIONS: These findings suggest that the combination of ultra-high field diffusion MRI with fluorescent ALS mice reporters is a useful approach to detect and characterize presymptomatic white matter micro-ultrastructural changes and axonal connectivity anomalies in ALS.

18.
Netw Neurosci ; 2(1): 106-124, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29911667

RESUMEN

In this study, we investigate the organization of the structural connectome in cognitively well participants with Parkinson's disease (PD-Well; n = 31) and a subgroup of participants with Parkinson's disease who have amnestic disturbances (PD-MI; n = 9). We explore correlations between connectome topology and vulnerable cognitive domains in Parkinson's disease relative to non-Parkinson's disease peers (control, n = 40). Diffusion-weighted MRI data and deterministic tractography were used to generate connectomes. Connectome topological indices under study included weighted indices of node strength, path length, clustering coefficient, and small-worldness. Relative to controls, node strength was reduced 4.99% for PD-Well (p = 0.041) and 13.2% for PD-MI (p = 0.004). We found bilateral differences in the node strength between PD-MI and controls for inferior parietal, caudal middle frontal, posterior cingulate, precentral, and rostral middle frontal. Correlations between connectome and cognitive domains of interest showed that topological indices of global connectivity negatively associated with working memory and displayed more and larger negative correlations with neuropsychological indices of memory in PD-MI than in PD-Well and controls. These findings suggest that indices of network connectivity are reduced in PD-MI relative to PD-Well and control participants.

19.
IEEE Trans Med Imaging ; 37(4): 966-976, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29610075

RESUMEN

We present the first in vivo images of anisotropic conductivity distribution in the human head, measured at a frequency of approximately 10 Hz. We used magnetic resonance electrical impedance tomography techniques to encode phase changes caused by current flow within the head via two independent electrode pairs. These results were then combined with diffusion tensor imaging data to reconstruct full anisotropic conductivity distributions in 5-mm-thick slices of the brains of two participants. Conductivity values recovered in this paper were broadly consistent with literature values. We anticipate that this technique will be of use in many areas of neuroscience, most importantly in functional imaging via inverse electroencephalogram. Future studies will involve pulse sequence acceleration to maximize brain coverage and resolution.


Asunto(s)
Imagen de Difusión Tensora/métodos , Cabeza/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Impedancia Eléctrica , Humanos , Masculino , Adulto Joven
20.
Neural Plast ; 2018: 8525706, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627150

RESUMEN

Background: Phosphene generation is an objective physical measure of potential transcranial alternating current stimulation (tACS) biological side effects. Interpretations from phosphene analysis can serve as a first step in understanding underlying mechanisms of tACS in healthy human subjects and assist validation of computational models. Objective/Hypothesis: This preliminary study introduces and tests methods to analyze predicted phosphene occurrence using computational head models constructed from tACS recipients against verbal testimonies of phosphene sensations. Predicted current densities in the eyes and the occipital lobe were also verified against previously published threshold values for phosphenes. Methods: Six healthy subjects underwent 10 Hz tACS while being imaged in an MRI scanner. Two different electrode montages, T7-T8 and Fpz-Oz, were used. Subject ratings of phosphene experience were collected during tACS and compared against current density distributions predicted in eye and occipital lobe regions of interest (ROIs) determined for each subject. Calculated median current densities in each ROI were compared to minimum thresholds for phosphene generation. Main Results: All subjects reported phosphenes, and predicted median current densities in ROIs exceeded minimum thresholds for phosphenes found in the literature. Higher current densities in the eyes were consistently associated with decreased phosphene generation for the Fpz-Oz montage. There was an overall positive association between phosphene perceptions and current densities in the occipital lobe. Conclusions: These methods may have promise for predicting phosphene generation using data collected during in-scanner tACS sessions and may enable better understanding of phosphene origin. Additional empirical data in a larger cohort is required to fully test the robustness of the proposed methods. Future studies should include additional montages that could dissociate retinal and occipital stimulation.


Asunto(s)
Fosfenos/fisiología , Estimulación Transcraneal de Corriente Directa , Corteza Visual/fisiología , Adulto , Humanos , Imagen por Resonancia Magnética , Corteza Visual/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...