Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Crit Rev Biomed Eng ; 42(1): 63-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25271359

RESUMEN

In this study, we applied continuous random walk theory (CTRW) to develop a new model that characterizes anomalous diffusion in magnetic resonance imaging experiments. Furthermore, we applied a classification scheme based on information theoretic a techniques to characterize the degree of heterogeneity and complexity in biological tissues. From a CTRW approach, the Fourier transform of the generalized solution to the diffusion equation comes in the form of the Mittag-Leffler function. In this solution form, the relative stochastic uncertainty in the diffusion process can be computed with spectral entropy. We interrogated both white and gray matter regions of a fixed rat brain with diffusion - weighted magnetic resonance imaging experiments up to 26,000 s/mm² by independently weighting q and Δ. to investigate the effects on the diffusion phenomena. Our model fractional order parameters, α and ß, and entropy measure, H(q, Δ), differentiated between tissue types and extracted differing information within a region of interest based on the type of diffusion experiment performed. By combining fractional order modeling and information theory, new and powerful biomarkers are available to characterize tissue microstructure and provide contextual information about the anatomical complexity.


Asunto(s)
Biopolímeros/química , Química Encefálica/efectos de la radiación , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Químicos , Modelos Neurológicos , Imagen Molecular/métodos , Animales , Biomarcadores/química , Simulación por Computador , Difusión/efectos de la radiación , Humanos , Campos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA