Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Meas ; 44(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655496

RESUMEN

We comment on the paper by Seibt and coworkers (Seibtet al2023) which investigates whether wearing an additional respiratory measurement mask during open-circuit spirometry assessments (respirometry mask) shows any effect on breathing pressure and perceived respiratory effort when wearing protective face masks commonly worn during the COVID-19 pandemic.

2.
BMC Pulm Med ; 22(1): 233, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710385

RESUMEN

BACKGROUND: Most threshold limit values are based on animal experiments. Often, the question remains whether these data reflect the situation in humans. As part of a series of investigations in our exposure lab, this study investigates whether the results on the inflammatory effects of particles that have been demonstrated in animal models can be confirmed in acute inhalation studies in humans. Such studies have not been conducted so far for barium sulfate particles (BaSO4), a substance with very low solubility and without known substance-specific toxicity. Previous inhalation studies with zinc oxide (ZnO), which has a substance-specific toxicity, have shown local and systemic inflammatory respones. The design of these human ZnO inhalation studies was adopted for BaSO4 to compare the effects of particles with known inflammatory activity and supposedly inert particles. For further comparison, in vitro investigations on inflammatory processes were carried out. METHODS: Sixteen healthy volunteers were exposed to filtered air and BaSO4 particles (4.0 mg/m3) for two hours including one hour of ergometric cycling at moderate workload. Effect parameters were clinical signs, body temperature, and inflammatory markers in blood and induced sputum. In addition, particle-induced in vitro-chemotaxis of BaSO4 was investigated with regard to mode of action and differences between in vivo and in vitro effects. RESULTS: No local or systemic clinical signs were observed after acute BaSO4 inhalation and, in contrast to our previous human exposure studies with ZnO, no elevated values of biomarkers of inflammation were measured after the challenge. The in vitro chemotaxis induced by BaSO4 particles was minimal and 15-fold lower compared to ZnO. CONCLUSION: The results of this study indicate that BaSO4 as a representative of granular biopersistent particles without specific toxicity does not induce inflammatory effects in humans after acute inhalation. Moreover, the in vitro data fit in with these in vivo results. Despite the careful and complex investigations, limitations must be admitted because the number of local effect parameters were limited and chronic toxicity could not be studied.


Asunto(s)
Nanopartículas , Óxido de Zinc , Animales , Sulfato de Bario/toxicidad , Voluntarios Sanos , Humanos , Exposición por Inhalación/efectos adversos , Tamaño de la Partícula , Óxido de Zinc/toxicidad
3.
Arch Toxicol ; 95(1): 53-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001223

RESUMEN

Inhalation of ZnO particles can cause inflammation of the airways and metal fume fever. It is unclear if different sizes of the particles alter these effects. However, various studies report higher biological activity of other nano-sized particles compared to microparticles. No effects at all were observed after inhalation of micro- and nano-sized zinc oxide (ZnO) particle concentrations of 0.5 mg/m3. Studies with different particle sizes of ZnO at higher exposures are not available. Accordingly, we hypothesized that inhalation of nano-sized ZnO particles induces stronger health effects than the inhalation of the same airborne mass concentration of micro-sized ZnO particles. 16 healthy volunteers (eight men, eight women) were exposed to filtered air and ZnO particles (2.0 mg/m3) for 2 h (one session with nano- and one with micro-sized ZnO) including 1 h of cycling at moderate workload. Effect parameters were symptoms, body temperature, inflammatory markers in blood and in induced sputum. Induced sputum was obtained at baseline examination, 22 h after exposure and at the end of the final test. The effects were assessed before, immediately after, about 22 h after, as well as two and three days after each exposure. Neutrophils, monocytes and acute-phase proteins in blood increased 22 h after micro- and nano-sized ZnO exposure. Effects were generally stronger with micro-sized ZnO particles. Parameters in induced sputum showed partial increases on the next day, but the effect strengths were not clearly attributable to particle sizes. The hypothesis that nano-sized ZnO particles induce stronger health effects than micro-sized ZnO particles was not supported by our data. The stronger systemic inflammatory responses after inhalation of micro-sized ZnO particles can be explained by the higher deposition efficiency of micro-sized ZnO particles in the respiratory tract and a substance-specific mode of action, most likely caused by the formation of zinc ions.


Asunto(s)
Mediadores de Inflamación/sangre , Nanopartículas del Metal/administración & dosificación , Sistema Respiratorio/efectos de los fármacos , Óxido de Zinc/administración & dosificación , Proteínas de Fase Aguda/metabolismo , Administración por Inhalación , Adulto , Ciclismo , Biomarcadores/sangre , Regulación de la Temperatura Corporal/efectos de los fármacos , Método Doble Ciego , Femenino , Humanos , Masculino , Nanopartículas del Metal/efectos adversos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Nebulizadores y Vaporizadores , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Tamaño de la Partícula , Distribución Aleatoria , Sistema Respiratorio/metabolismo , Esputo/metabolismo , Factores de Tiempo , Adulto Joven , Óxido de Zinc/efectos adversos , Óxido de Zinc/metabolismo
4.
J Occup Med Toxicol ; 15: 4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140173

RESUMEN

BACKGROUND: Exposure to airborne zinc oxide (ZnO) particles occurs in many industrial processes, especially in galvanizing and welding. Systemic inflammation after experimental inhalation of ZnO particles has been demonstrated previously, but little is known about the impact on the cardiovascular system, particularly on the autonomic cardiac system and the risk of arrhythmias. In this study we investigated the short-term effects of ZnO nanoparticles on heart rate variability (HRV) and repolarization in healthy adults in a concentration-dependent manner at rest and during exercise in a controlled experimental set-up. METHODS: Sixteen healthy subjects were exposed to filtered air and ZnO particles (0.5, 1.0 and 2.0 mg/m3) for 4 h, including 2 h of cycling at low workloads. Parameters were assessed before, during, immediately after, and about 24 h after each exposure. For each subject, a total number of 46 10-min-sections from electrocardiographic records were analyzed. Various parameters of HRV and QT interval were measured. RESULTS: Overall, no statistically significant effects of controlled ZnO inhalation on HRV parameters and QT interval were observed. Additionally, a concentration-response was absent. CONCLUSION: Inhalation of ZnO nanoparticles up to 2.0 mg/m3 for 4 h does not affect HRV and cardiac repolarization in healthy adults at the chosen time points. This study supports the view that cardiac endpoints are insensitive for the assessment of adverse effects after short-term inhalation of ZnO nanoparticles.

5.
BMC Pulm Med ; 19(1): 266, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31888596

RESUMEN

BACKGROUND: Workers in the zinc production and processing of galvanized sheet steel are exposed to a complex mixture of particles and gases, including zinc oxide (ZnO) that can affect human health. We aimed to study the effects of short-term controlled exposure to nano-sized ZnO on airway inflammatory markers in healthy volunteers. METHODS: Sixteen subjects (8 females, 8 men; age 19-42, non-smokers) were exposed to filtered air and ZnO nanoparticles (0.5, 1.0 and 2.0 mg/m3) for 4 h, including 2 h of cycling with a low workload. Induced sputum samples were collected during a medical baseline and a final examination and also about 24 h after each exposure. A number of inflammatory cellular and soluble markers were analyzed. RESULTS: Frequency and intensity of symptoms of airway irritation (throat irritation and cough) were increased in some subjects 24 h after ZnO exposures when compared to filtered air. The group comparison between filtered air and ZnO exposures showed statistically significant increases of neutrophils and interleukin-8 (IL-8), interleukin-6 (IL-6), matrix metalloproteinase (MMP-9) and tissue inhibitors of metalloproteinases (TIMP-1) in sputum starting at the lowest ZnO concentration of 0.5 mg/m3. However, a concentration-response relationship was absent. Effects were reversible. Strong correlations were found between neutrophil numbers and concentrations of total protein, IL-8, MMP-9, and TIMP-1. CONCLUSIONS: Controlled exposures of healthy subjects to ZnO nanoparticles induce reversible airway inflammation which was observed at a concentration of 0.5 mg/m3 and higher. The lack of a concentration-response relationship warrants further studies.


Asunto(s)
Tos/inducido químicamente , Nanopartículas/efectos adversos , Faringitis/inducido químicamente , Óxido de Zinc/efectos adversos , Administración por Inhalación , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Esputo/química , Adulto Joven , Óxido de Zinc/administración & dosificación
6.
Part Fibre Toxicol ; 15(1): 8, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29429408

RESUMEN

BACKGROUND: Inhalation of high concentrations of zinc oxide particles (ZnO) may cause metal fume fever. In an earlier human inhalation study, no effects were observed after exposure to ZnO concentrations of 0.5 mg/m3. Further data from experimental studies with pure ZnO in the concentration range between 0.5 and 2.5 mg/m3 are not available. It was the aim of this experimental study to establish the concentration-response relationship of pure nano-sized ZnO particles. METHODS: Sixteen healthy subjects were exposed to filtered air and ZnO particles (0.5, 1.0 and 2.0 mg/m3) for 4 h on 4 different days, including 2 h of cycling with a low workload. The effects were assessed before, immediately after, and about 24 h after each exposure. Effect parameters were symptoms, body temperature, inflammatory markers and clotting factors in blood, and lung function. RESULTS: Concentration-dependent increases in symptoms, body temperature, acute phase proteins and neutrophils in blood were detected after ZnO inhalation. Significant effects were detected with ZnO concentrations of 1.0 mg/m3 or higher, with the most sensitive parameters being inflammatory markers in blood. CONCLUSION: A concentration-response relationship with nano-sized ZnO particles in a low concentration range was demonstrated. Systemic inflammatory effects of inhaled nano-sized ZnO particles were observed at concentrations well below the occpational exposure limit for ZnO in many countries. It is recommended to reassess the exposure limit for ZnO at workplaces.


Asunto(s)
Reacción de Fase Aguda/inducido químicamente , Exposición por Inhalación/análisis , Nanopartículas/toxicidad , Óxido de Zinc/toxicidad , Reacción de Fase Aguda/sangre , Adulto , Femenino , Voluntarios Sanos , Humanos , Exposición por Inhalación/efectos adversos , Masculino , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Encuestas y Cuestionarios , Adulto Joven , Óxido de Zinc/administración & dosificación
7.
Arch Toxicol ; 91(11): 3597, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29090345

RESUMEN

The article 'Quantification of N-phenyl-2-naphthylamine by gas chromatography and isotope-dilution mass spectrometry and its percutaneous absorption ex vivo under workplace conditions' written by Heiko Udo Käfferlein, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 12th September 2017 without open access.

8.
Arch Toxicol ; 91(11): 3587-3596, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28900691

RESUMEN

N-Phenyl-2-naphthylamine (P2NA) is an antioxidant used to protect rubbers from flex-cracking. P2NA can be converted in vivo to 2NA, one of the most potent bladder carcinogens. Here, we report the specific and ultra-sensitive quantification of P2NA in the receptor fluid of Franz diffusion cells by gas chromatography and isotope-dilution tandem-mass spectroscopy (GC-MS/MS). The experimental conditions were optimized to minimize losses of P2NA due to surface absorption on glass, plastic, and rubber material, and subsequently validated. Static and dynamic diffusion cell conditions were used to study the percutaneous penetration of P2NA into freshly prepared porcine skin. The experimental settings closely resembled those of the printing industry in the 1960s/1970s in Germany where P2NA-containing solutions in dichloromethane have been used. P2NA penetrated the skin at very low levels (0.02 ± 0.01 µg/cm2/h) with a cumulative penetrated amount of 0.80 ± 0.26 µg/cm2, a lag time of 6.33 ± 2.21 h and under dynamic conditions. Compared to the receptor fluid, 10-40-fold higher concentrations were found in the skin, predominantly in the dermis and the stratum corneum. Dichloromethane acted as a penetration enhancer by increasing the cumulative penetrated amounts and the recovery of P2NA in both the receptor fluid and the skin, while shortening its lag time. However, the flux remained unaffected. Due to its accumulation in subcutaneous layers, we finally proved that P2NA is continuously released into the receptor fluid despite exposure cessation up to 160 h. Overall, the results show that close attention has to be paid to dermal absorption of P2NA in exposed workers.


Asunto(s)
2-Naftilamina/análogos & derivados , Cromatografía de Gases y Espectrometría de Masas/métodos , Absorción Cutánea/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , 2-Naftilamina/análisis , 2-Naftilamina/farmacocinética , 2-Naftilamina/toxicidad , Animales , Alemania , Humanos , Isótopos , Límite de Detección , Cloruro de Metileno/farmacocinética , Exposición Profesional , Reproducibilidad de los Resultados , Porcinos , Lugar de Trabajo
9.
Arch Toxicol ; 88(7): 1419-26, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24899222

RESUMEN

Aniline is an important starting material in the manufacture of polyurethane-based plastic materials. Aniline-derived methemoglobinemia (Met-Hb) is well described in exposed workers although information on the dose-response association is limited. We used an experimental design to study the association between aniline in air with the formation of Met-Hb in blood and the elimination of aniline in urine. A 6-h exposure of 2 ppm aniline in 19 non-smoking volunteers resulted in a time-dependent increase in Met-Hb in blood and aniline in urine. The maximum Met-Hb level in blood (mean 1.21 ± 0.29 %, range 0.80-2.07 %) and aniline excretion in urine (mean 168.0 ± 51.8 µg/L, range 79.5-418.3 µg/L) were observed at the end of exposure, with both parameters rapidly decreasing after the end of exposure. After 24 h, the mean level of Met-Hb (0.65 ± 0.18 %) returned to the basal level observed prior to the exposure (0.72 ± 0.19 %); whereas, slightly elevated levels of aniline were still present in urine (means 17.0 ± 17.1 vs. 5.7 ± 3.8 µg/L). No differences between males and females as well as between slow and fast acetylators were found. The results obtained after 6-h exposure were also comparable to those observed in four non-smoking volunteers after 8-h exposure. Maximum levels of Met-Hb and aniline in urine were 1.57 % and 305.6 µg/L, respectively. Overall, our results contribute to the risk assessment of aniline and as a result, the protection of workers from aniline-derived adverse health effects at the workplace.


Asunto(s)
Compuestos de Anilina/administración & dosificación , Metahemoglobina/metabolismo , Enfermedades Profesionales/prevención & control , Exposición Profesional/prevención & control , Adulto , Compuestos de Anilina/toxicidad , Compuestos de Anilina/orina , Femenino , Humanos , Masculino , Metahemoglobinemia/inducido químicamente , Metahemoglobinemia/prevención & control , Persona de Mediana Edad , Proyectos Piloto , Medición de Riesgo/métodos , Factores Sexuales , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...