Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202400871, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777795

RESUMEN

Calixarenes are displaying great potential for the development of new drug delivery systems, diagnostic imaging, biosensing devices and inhibitors of biological processes. In particular, calixarene derivatives are able to interact with many different enzymes and function as inhibitors. By screening of the potential drug target database (PDTD) with a reverse docking procedure, we identify and discuss a selection of 100 proteins that interact strongly with calix[4]arene. We also discover that leucine (23.5 %), isoleucine (11.3 %), phenylalanines (11.3 %) and valine (9.5 %) are the most frequent binding residues followed by hydrophobic cysteines and methionines and aromatic histidines, tyrosines and tryptophanes. Top binders are peroxisome proliferator-activated receptors that already are targeted by commercial drugs, demonstrating the practical interest in calix[4]arene. Nuclear receptors, potassium channel, several carrier proteins, a variety of cancer-related proteins and viral proteins are prominent in the list. It is concluded that calix[4]arene, which is characterized by facile access, well-defined conformational characteristics, and ease of functionalization at both the lower and higher rims, could be a potential lead compound for the development of enzyme inhibitors and theranostic platforms.

2.
J Mater Chem B ; 12(21): 5162-5170, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38687242

RESUMEN

Au(III) is highly reactive. At odds with its reduced counterpart, Au(I), it is hardly present in structural databases. And yet, it is the starting reactant to form gold nanoclusters (AuNCs) and the constitutive component of a new class of drugs. Its reactivity is a world apart from that of the iso-electronic Pt(II) species. Rather than DNA, it targets proteins. Its interaction with amino acid residues is manifold. It can strongly interact with the residue backbones, amino acid side chains and protein ends, it can form appropriate complexes whose stabilization energy reaches up to more than 40 kcal mol-1, it can affect the pKa of amino acid residues, and it can promote charge transfer from the residues to the amount that it is reduced. Here, quantum chemical calculations provide quantitative information on all the processes where Au(III) can be involved. A myriad of structural arrangements are examined in order to determine the strongest interactions and quantify the amount of charge transfer between protonated and deprotonated residues and Au(III). The calculated interaction energies of the amino acid side chains with Au(III) quantitatively reproduce the experimental tendency of Au(III) to interact with selenocysteine, cysteine and histidine and negatively charged amino acids such as Glu and Asp. Also, aromatic residues such as tyrosine and tryptophan strongly interact with Au(III). In proteins, basic pH plays a role in the deprotonation of cysteine, lysine and tyrosine and strongly increases the binding affinity of Au(III) toward these amino acids. The amino acid residues in the protein can also trigger the reduction of Au(III) ions. Sulfur-containing amino acids (cysteine and methionine) and selenocysteine provide almost one electron to Au(III) upon binding. Tyrosine also shows a considerable tendency to act as a reductant. Other amino acids, commonly identified in Au-protein adducts, such as Ser, Trp, Thr, Gln, Glu, Asn, Asp, Lys, Arg and His, possess a notable reducing power toward Au(III). These results and their discussion form a vade mecum that can find application in medicinal chemistry and nanotech applications of Au(III).


Asunto(s)
Aminoácidos , Oro , Oro/química , Aminoácidos/química , Nanotecnología/métodos , Nanopartículas del Metal/química , Química Farmacéutica
3.
Nanoscale ; 16(14): 7123-7133, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38501609

RESUMEN

Filters made of graphene oxide (GO) are promising for purification of water and selective sieving of specific ions; while some results indicate the ionic radius as the discriminating factor in the sieving efficiency, the exact mechanism of sieving is still under debate. Furthermore, most of the reported GO filters are planar coatings with a simple geometry and an area much smaller than commercial water filters. Here, we show selective transport of different ions across GO coatings deposited on standard hollow fiber filters with an area >10 times larger than typical filters reported. Thanks to the fabrication procedure, we obtained a uniform coating on such complex geometry with no cracks or holes. Monovalent ions like Na+ and K+ can be transported through these filters by applying a low electric voltage, while divalent ions are blocked. By combining transport and adsorption measurements with molecular dynamics simulations and spectroscopic characterization, we unravel the ion sieving mechanism and demonstrate that it is mainly due to the interactions of the ions with the carboxylate groups present on the GO surface at neutral pH.

4.
Cancers (Basel) ; 15(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894311

RESUMEN

Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.

5.
Ocul Surf ; 30: 168-178, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37742739

RESUMEN

PURPOSE: Lumican is a major extracellular matrix (ECM) component in the cornea that is upregulated after injury and promotes corneal wound healing. We have recently shown that peptides designed based on the 13 C-terminal amino acids of lumican (LumC13 and LumC13C-A) are able to recapitulate the effects of lumican on promoting corneal wound healing. Herein we used computational chemistry to develop peptide mimetics derived from LumC13C-A with increased stability and half-life that are biologically active and non-toxic, thereby promoting corneal wound healing with increased pharmacological potential. METHODS: Different peptides staples were rationalized using LumC13C-A sequence by computational chemistry, docked to TGFßRI and the interface binding energies compared. Lowest scoring peptides were synthesized, and the toxicity of peptides tested using CCK8-based cell viability assay. The efficacy of the stapled peptides at promoting corneal wound healing was tested using a proliferation assay, an in vitro scratch assay using human corneal epithelial cells and an in vivo murine corneal debridement wound healing model. RESULTS: Binding free energies were calculated using MMGBSA algorithm, and peptides LumC13C and LumC13S5 displayed superior binding to ALK5 compared to the non-stapled peptide LumC13C-A. The presence of the hydrocarbon staple in LumC13C enhances the stability of the α-helical conformation, thereby facilitating more optimal interactions with the ALK5 receptor. The stapled peptides do not present cytotoxic effects on human corneal epithelial cells at a 300 nM concentration. Similar to lumican and LumC13C-A, both C13C and LumC13S5 significantly promote corneal wound healing both in vitro and in vivo. CONCLUSIONS: Highly stable and non-toxic stapled peptides designed based on LumC13, significantly promote corneal wound healing. As a proof of principle, our data shows that more stable and pharmacologically relevant peptides can be designed based on endogenous peptide sequences for treating various corneal pathologies.


Asunto(s)
Lesiones de la Cornea , Epitelio Corneal , Humanos , Animales , Ratones , Lumican/metabolismo , Lumican/farmacología , Córnea/patología , Lesiones de la Cornea/metabolismo , Cicatrización de Heridas , Péptidos/farmacología , Péptidos/metabolismo , Epitelio Corneal/metabolismo
6.
Chemistry ; 29(55): e202301704, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37432093

RESUMEN

Semiconducting single walled carbon nanotubes (SWCNTs) are promising materials for biosensing applications with electrolyte-gated transistors (EGT). However, to be employed in EGT devices, SWCNTs often require lengthy solution-processing fabrication techniques. Here, we introduce a simple solution-based method that allows fabricating EGT devices from stable dispersions of SWCNTs/bovine serum albumin (BSA) hybrids in water. The dispersion is then deposited on a substrate allowing the formation of a SWCNTs random network as the semiconducting channel. We demonstrate that this methodology allows the fabrication of EGT devices with electric performances that allow their use in biosensing applications. We demonstrate their application for the detection of cortisol in solution, upon gate electrode functionalization with anti-cortisol antibodies. This is a robust and cost-effective methodology that sets the ground for a SWCNT/BSA-based biosensing platform that allows overcoming many limitations of standard SWCNTs biosensor fabrications.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Albúmina Sérica Bovina , Técnicas Biosensibles/métodos , Electrólitos
7.
Nanomaterials (Basel) ; 13(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299673

RESUMEN

Carboranes are promising agents for applications in boron neutron capture therapy (BNCT), but their hydrophobicity prevents their use in physiological environments. Here, by using reverse docking and molecular dynamics (MD) simulations, we identified blood transport proteins as candidate carriers of carboranes. Hemoglobin showed a higher binding affinity for carboranes than transthyretin and human serum albumin (HSA), which are well-known carborane-binding proteins. Myoglobin, ceruloplasmin, sex hormone-binding protein, lactoferrin, plasma retinol-binding protein, thyroxine-binding globulin, corticosteroid-binding globulin and afamin have a binding affinity comparable to transthyretin/HSA. The carborane@protein complexes are stable in water and characterized by favorable binding energy. The driving force in the carborane binding is represented by the formation of hydrophobic interactions with aliphatic amino acids and BH-π and CH-π interactions with aromatic amino acids. Dihydrogen bonds, classical hydrogen bonds and surfactant-like interactions also assist the binding. These results (i) identify the plasma proteins responsible for binding carborane upon their intravenous administration, and (ii) suggest an innovative formulation for carboranes based on the formation of a carborane@protein complex prior to the administration.

8.
Int J Nanomedicine ; 18: 1709-1724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025922

RESUMEN

Introduction: Thanks to recent advances in synthetic methodology, water-soluble fullerene nanomaterials that interfere with biomolecules, especially DNA/RNA and selected proteins, have been found with tremendous potential for applications in nanomedicine. Herein, we describe the synthesis and evaluation of a water-soluble glycine-derived [60]fullerene hexakisadduct (HDGF) with T h symmetry, which is a first-in-class BTK protein inhibitor. Methods: We synthesized and characterized glycine derived [60]fullerene using NMR, ESI-MS, and ATR-FT-IR. DLS and zeta potential were measured and high-resolution transmission electron microscopy (HRTEM) observations were performed. The chemical composition of the water-soluble fullerene nanomaterial was examined by X-ray photoelectron spectrometry. To observe aggregate formation, the cryo-TEM analysis was carried out. The docking studies and molecular dynamic simulations were performed to determine interactions between HDGF and BTK. The in vitro cytotoxicity was evaluated on RAJI and K562 blood cancer cell lines. Subsequently, we examined the induction of cell death by autophagy and apoptosis by determining the expression levels of crucial genes and caspases. We investigated the direct association of HDGF on inhibition of the BTK signalling pathway by examining changes in the calcium levels in RAJI cells after treatment. The inhibitory potential of HDGF against non-receptor tyrosine kinases was evaluated. Finally, we assessed the effects of HDGF and ibrutinib on the expression of the BTK protein and downstream signal transduction in RAJI cells following anti-IgM stimulation. Results: Computational studies revealed that the inhibitory activity of the obtained [60]fullerene derivative is multifaceted: it hampers the BTK active site, interacting directly with the catalytic residues, rendering it inaccessible to phosphorylation, and binds to residues that form the ATP binding pocket. The anticancer activity of produced carbon nanomaterial revealed that it inhibited the BTK protein and its downstream pathways, including PLC and Akt proteins, at the cellular level. The mechanistic studies suggested the formation of autophagosomes (increased gene expression of LC3 and p62) and two caspases (caspase-3 and -9) were responsible for the activation and progression of apoptosis. Conclusion: These data illustrate the potential of fullerene-based BTK protein inhibitors as nanotherapeutics for blood cancer and provide helpful information to support the future development of fullerene nanomaterials as a novel class of enzyme inhibitors.


Asunto(s)
Antineoplásicos , Fulerenos , Neoplasias Hematológicas , Neoplasias , Humanos , Fulerenos/farmacología , Fulerenos/química , Agammaglobulinemia Tirosina Quinasa/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Agua , Antineoplásicos/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Caspasas , Glicina
9.
Pharmaceutics ; 15(3)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36986780

RESUMEN

Temoporfin (mTHPC) is one of the most promising photosensitizers used in photodynamic therapy (PDT). Despite its clinical use, the lipophilic character of mTHPC still hampers the full exploitation of its potential. Low solubility in water, high tendency to aggregate, and low biocompatibility are the main limitations because they cause poor stability in physiological environments, dark toxicity, and ultimately reduce the generation of reactive oxygen species (ROS). Applying a reverse docking approach, here, we identified a number of blood transport proteins able to bind and disperse monomolecularly mTHPC, namely apohemoglobin, apomyoglobin, hemopexin, and afamin. We validated the computational results synthesizing the mTHPC-apomyoglobin complex (mTHPC@apoMb) and demonstrated that the protein monodisperses mTHPC in a physiological environment. The mTHPC@apoMb complex preserves the imaging properties of the molecule and improves its ability to produce ROS via both type I and type II mechanisms. The effectiveness of photodynamic treatment using the mTHPC@apoMb complex was then demonstrated in vitro. Blood transport proteins can be used as molecular "Trojan horses" in cancer cells by conferring mTHPC (i) water solubility, (ii) monodispersity, and (iii) biocompatibility, ultimately bypassing the current limitations of mTHPC.

10.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903592

RESUMEN

Chlorin e6 (Ce6) is among the most used sensitizers in photodynamic (PDT) and sonodynamic (SDT) therapy; its low solubility in water, however, hampers its clinical exploitation. Ce6 has a strong tendency to aggregate in physiological environments, reducing its performance as a photo/sono-sensitizer, as well as yielding poor pharmacokinetic and pharmacodynamic properties. The interaction of Ce6 with human serum albumin (HSA) (i) governs its biodistribution and (ii) can be used to improve its water solubility by encapsulation. Here, using ensemble docking and microsecond molecular dynamics simulations, we identified the two Ce6 binding pockets in HSA, i.e., the Sudlow I site and the heme binding pocket, providing an atomistic description of the binding. Comparing the photophysical and photosensitizing properties of Ce6@HSA with respect to the same properties regarding the free Ce6, it was observed that (i) a red-shift occurred in both the absorption and emission spectra, (ii) a maintaining of the fluorescence quantum yield and an increase of the excited state lifetime was detected, and (iii) a switch from the type II to the type I mechanism in a reactive oxygen species (ROS) production, upon irradiation, took place.


Asunto(s)
Clorofilidas , Fotoquimioterapia , Porfirinas , Humanos , Albúmina Sérica Humana/metabolismo , Fármacos Fotosensibilizantes/química , Distribución Tisular , Porfirinas/química , Fotoquimioterapia/métodos , Línea Celular Tumoral
11.
Cells ; 12(3)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36766734

RESUMEN

The combination of photodynamic therapy with chemotherapy (photochemotherapy, PCT) can lead to additive or synergistic antitumor effects. Usually, two different molecules, a photosensitizer (PS) and a chemotherapeutic drug are used in PCT. Doxorubicin is one of the most successful chemotherapy drugs. Despite its high efficacy, two factors limit its clinical use: severe side effects and the development of chemoresistance. Doxorubicin is a chromophore, able to absorb light in the visible range, making it a potential PS. Here, we exploited the intrinsic photosensitizing properties of doxorubicin to enhance its anticancer activity in leukemia, breast, and epidermoid carcinoma cells, upon irradiation. Light can selectively trigger the local generation of reactive oxygen species (ROS), following photophysical pathways. Doxorubicin showed a concentration-dependent ability to generate peroxides and singlet oxygen upon irradiation. The underlying mechanisms leading to the increase in its cytotoxic activity were intracellular ROS generation and the induction of necrotic cell death. The nuclear localization of doxorubicin represents an added value for its use as a PS. The use of doxorubicin in PCT, simultaneously acting as a chemotherapeutic agent and a PS, may allow (i) an increase in the anticancer effects of the drug, and (ii) a decrease in its dose, and thus, its dose-related adverse effects.


Asunto(s)
Antineoplásicos , Fotoquimioterapia , Especies Reactivas de Oxígeno/metabolismo , Doxorrubicina/farmacología , Antineoplásicos/farmacología , Fármacos Fotosensibilizantes/farmacología
12.
Nanomaterials (Basel) ; 12(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36234629

RESUMEN

Fullerenes are considered excellent photosensitizers, being highly suitable for photodynamic therapy (PDT). A lack of water solubility and low biocompatibility are, in many instances, still hampering the full exploitation of their potential in nanomedicine. Here, we used human serum albumin (HSA) to disperse fullerenes by binding up to five fullerene cages inside the hydrophobic cavities. Albumin was bioconjugated with folic acid to specifically address the folate receptors that are usually overexpressed in several solid tumors. Concurrently, tetramethylrhodamine isothiocyanate, TRITC, a tag for imaging, was conjugated to C60@HSA in order to build an effective phototheranostic platform. The in vitro experiments demonstrated that: (i) HSA disperses C60 molecules in a physiological environment, (ii) HSA, upon C60 binding, maintains its biological identity and biocompatibility, (iii) the C60@HSA complex shows a significant visible-light-induced production of reactive oxygen species, and (iv) folate bioconjugation improves both the internalization and the PDT-induced phototoxicity of the C60@HSA complex in HeLa cells.

13.
Chem Commun (Camb) ; 58(70): 9766-9769, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35959981

RESUMEN

Lysine-covalently modified graphene oxide (GO-Lys) was prepared by an innovative procedure. Lysine brushes promote enhanced adsorption of bisphenol A, benzophenone-4 and carbamazepine contaminants from tap water, with a removal capacity beyond the state of the art.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cinética , Lisina , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
14.
Molecules ; 27(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335283

RESUMEN

The persistency of COVID-19 in the world and the continuous rise of its variants demand new treatments to complement vaccines. Computational chemistry can assist in the identification of moieties able to lead to new drugs to fight the disease. Fullerenes and carbon nanomaterials can interact with proteins and are considered promising antiviral agents. Here, we propose the possibility to repurpose fullerenes to clog the active site of the SARS-CoV-2 protease, Mpro. Through the use of docking, molecular dynamics, and energy decomposition techniques, it is shown that C60 has a substantial binding energy to the main protease of the SARS-CoV-2 virus, Mpro, higher than masitinib, a known inhibitor of the protein. Furthermore, we suggest the use of C70 as an innovative scaffold for the inhibition of SARS-CoV-2 Mpro. At odds with masitinib, both C60 and C70 interact more strongly with SARS-CoV-2 Mpro when different protonation states of the catalytic dyad are considered. The binding of fullerenes to Mpro is due to shape complementarity, i.e., vdW interactions, and is aspecific. As such, it is not sensitive to mutations that can eliminate or invert the charges of the amino acids composing the binding pocket. Fullerenic cages should therefore be more effective against the SARS-CoV-2 virus than the available inhibitors such as masinitib, where the electrostatic term plays a crucial role in the binding.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Fulerenos , Dominio Catalítico , Cisteína Endopeptidasas/química , Reposicionamiento de Medicamentos , Fulerenos/farmacología , Humanos , Péptido Hidrolasas/metabolismo , SARS-CoV-2 , Proteínas Virales/metabolismo
15.
Biomolecules ; 13(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36671454

RESUMEN

Temoporfin (mTHPC) is approved in Europe for the photodynamic treatment of head and neck squamous cell carcinoma (HNSCC). Although it has a promising profile, its lipophilic character hampers the full exploitation of its potential due to high tendency of aggregation and a reduced ROS generation that compromise photodynamic therapy (PDT) efficacy. Moreover, for its clinical administration, mTHPC requires the presence of ethanol and propylene glycol as solvents, often causing adverse effects in the site of injection. In this paper we explored the efficiency of a new mTHPC formulation that uses human serum albumin (HSA) to disperse the photosensitizer in solution (mTHPC@HSA), investigating its anticancer potential in two HNSCC cell lines. Through a comprehensive characterization, we demonstrated that mTHPC@HSA is stable in physiological environment, does not aggregate, and is extremely efficient in PDT performance, due to its high singlet oxygen generation and the high dispersion as monomolecular form in HSA. This is supported by the computational identification of the specific binding pocket of mTHPC in HSA. Moreover, mTHPC@HSA-PDT induces cytotoxicity in both HNSCC cell lines, increasing intracellular ROS generation and the number of γ-H2AX foci, a cellular event involved in the global response to cellular stress. Taken together these results highlight the promising phototoxic profile of the complex, prompting further studies to assess its clinical potential.


Asunto(s)
Neoplasias de Cabeza y Cuello , Fotoquimioterapia , Humanos , Albúmina Sérica Humana , Especies Reactivas de Oxígeno , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
16.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615918

RESUMEN

Nanoscale control of chemical reactivity, manipulation of reaction pathways, and ultimately driving the outcome of chemical reactions are quickly becoming reality. A variety of tools are concurring to establish such capability. The confinement of guest molecules inside nanoreactors, such as the hollow nanostructures of carbon nanotubes (CNTs), is a straightforward and highly fascinating approach. It mechanically hinders some molecular movements but also decreases the free energy of translation of the system with respect to that of a macroscopic solution. Here, we examined, at the quantum mechanics/molecular mechanics (QM/MM) level, the effect of confinement inside CNTs on nucleophilic substitution (SN2) and elimination (syn-E2 and anti-E2) using as a model system the reaction between ethyl chloride and chloride. Our results show that the three reaction mechanisms are kinetically and thermodynamically affected by the CNT host. The size of the nanoreactor, i.e., the CNT diameter, represents the key factor to control the energy profiles of the reactions. A careful analysis of the interactions between the CNTs and the reactive system allowed us to identify the driving force of the catalytic process. The electrostatic term controls the reaction kinetics in the SN2 and syn/anti-E2 reactions. The van der Waals interactions play an important role in the stabilization of the product of the elimination process.

17.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768997

RESUMEN

Molecular dynamics simulations were used to quantitatively investigate the interactions between the twenty proteinogenic amino acids and C60. The conserved amino acid backbone gave a constant energetic interaction ~5.4 kcal mol-1, while the contribution to the binding due to the amino acid side chains was found to be up to ~5 kcal mol-1 for tryptophan but lower, to a point where it was slightly destabilizing, for glutamic acid. The effects of the interplay between van der Waals, hydrophobic, and polar solvation interactions on the various aspects of the binding of the amino acids, which were grouped as aromatic, charged, polar and hydrophobic, are discussed. Although π-π interactions were dominant, surfactant-like and hydrophobic effects were also observed. In the molecular dynamics simulations, the interacting residues displayed a tendency to visit configurations (i.e., regions of the Ramachandran plot) that were absent when C60 was not present. The amino acid backbone assumed a "tepee-like" geometrical structure to maximize interactions with the fullerene cage. Well-defined conformations of the most interactive amino acids (Trp, Arg, Met) side chains were identified upon C60 binding.


Asunto(s)
Aminoácidos/química , Fulerenos/química , Péptidos/química , Proteínas/química , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular
18.
ACS Catal ; 11(17): 10974-10987, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37799563

RESUMEN

Heparan sulfate (HS) and heparin contain imprinted "sulfation codes", which dictate their diverse physiological and pathological functions. A group of orchestrated biosynthetic enzymes cooperate in polymerizing and modifying HS chains. The biotechnological development of enzymes that can recreate this sulfation pattern on synthetic heparin is challenging, primarily due to the paucity of quantitative data for sulfotransferase enzymes. Herein, we identified critical structural characteristics that determine substrate specificity and shed light on the catalytic mechanism of sugar sulfation of two HS sulfotransferases, 2-O-sulfotransferase (HS2ST) and 6-O-sulfotransferase (HS6ST). Two sets of molecular clamps in HS2ST recognize appropriate substrates; these clamps flank the acceptor binding site on opposite sides. The hexuronic epimers, and not their puckers, have a critical influence on HS2ST selectivity. In contrast, HS6ST recognizes a broader range of substrates. This promiscuity is granted by a conserved tryptophan residue, W210, that positions the acceptor within the active site for catalysis by means of strong electrostatic interactions. Lysines K131 and K132 act in concert with a second tryptophan, W153, shedding water molecules from within the active site, thus providing HS6ST with a binding preference toward 2-O-sulfated substrates. QM/MM calculations provided valuable mechanistic insights into the catalytic process, identifying that the sulfation of both HS2ST and HS6ST follows a SN2-like mechanism. When they are taken together, our findings reveal the molecular basis of how these enzymes recognize different substrates and catalyze sugar sulfation, enabling the generation of enzymes that could create specific heparin epitopes.

19.
Faraday Discuss ; 227: 274-290, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300505

RESUMEN

Commercial hollow fiber filters for micro- and ultrafiltration are based on size exclusion and do not allow the removal of small molecules such as antibiotics. Here, we demonstrate that a graphene oxide (GO) layer can be firmly immobilized either inside or outside polyethersulfone-polyvinylpyrrolidone hollow fiber (Versatile PES®, hereafter PES) modules and that the resulting core-shell fibers inherits the microfiltration ability of the pristine PES fibers and the adsorption selectivity of GO. GO nanosheets were deposited on the fiber surface by filtration of a GO suspension through a PES cartridge (cut-off 0.1-0.2 µm), then fixed by thermal annealing at 80 °C, rendering the GO coating stably fixed and unsoluble. The filtration cut-off, retention selectivity and efficiency of the resulting inner and outer modified hollow fibers (HF-GO) were tested by performing filtration on water and bovine plasma spiked with bovine serum albumin (BSA, 66 kDa, ≈15 nm size), monodisperse polystyrene nanoparticles (52 nm and 303 nm sizes), with two quinolonic antibiotics (ciprofloxacin and ofloxacin) and rhodamine B (RhB). These tests showed that the microfiltration capability of PES was retained by HF-GO, and in addition the GO coating can capture the molecular contaminants while letting through BSA and smaller polystyrene nanoparticles. Combined XRD, molecular modelling and adsorption experiments show that the separation mechanism does not rely only on physical size exclusion, but involves intercalation of solute molecules between the GO layers.

20.
J Colloid Interface Sci ; 571: 174-184, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32199270

RESUMEN

The preferred spatial orientation of single-wall carbon nanotubes (SWCNTs) in their interaction with enzymes determines their behavior either as nano-supports or as inhibitors. α -chymotrypsin (α-CT) is considered a serine protease model for studying nanomaterial/proteases interactions. The interaction of α-CT with pristine single-wall carbon nanotubes is still unknown. Here α-CT/SWCNT hybrids are synthesized and characterized. Spectroscopic, microscopic and kinetic measurements, coupled to molecular dynamics simulations, provide a detailed description of the interaction between α-CT and SWCNTs. The SWCNT binding pocket was unambiguously identified. A perfect match is observed with the crevice structure of the α-CT substrate binding pocket. The activity of α-CT, upon SWCNT binding, is dramatically reduced, as expected by the interaction of the SWCNT in the active site of the protein. π-π stacking between aromatic residues and the conjugated surface of SWCNT governs α-CT/SWCNT interactions. An important role in the bonding appears also for purely hydrophobic residues and with residues able to establish surfactant-like interactions. The secondary structure of α-CT and the catalytic triad structure are not perturbed by the complex formation, on the contrary the volume of the substrate binding pocket is strongly reduced by SWCNT binding because SWCNT occupies the α-CT substrate binding site, clogging the active site.


Asunto(s)
Quimotripsina/antagonistas & inhibidores , Fulerenos/farmacología , Nanotubos de Carbono/química , Inhibidores de Serina Proteinasa/farmacología , Sitios de Unión/efectos de los fármacos , Quimotripsina/metabolismo , Fulerenos/química , Simulación de Dinámica Molecular , Tamaño de la Partícula , Inhibidores de Serina Proteinasa/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...