Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 24(20): e202300400, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37518671

RESUMEN

5-Methylcytosine and 5-hydroxymethylcytosine are epigenetic modifications involved in gene regulation and cancer. We present a new, simple, and high-throughput platform for multi-color epigenetic analysis. The novelty of our approach is the ability to multiplex methylation and de-methylation signals in the same assay. We utilize an engineered methyltransferase enzyme that recognizes and labels all unmodified CpG sites with a fluorescent cofactor. In combination with the already established labeling of the de-methylation mark 5-hydroxymethylcytosine via enzymatic glycosylation, we obtained a robust platform for simultaneous epigenetic analysis of these marks. We assessed the global epigenetic levels in multiple samples of colorectal cancer and observed a 3.5-fold reduction in 5hmC levels but no change in DNA methylation levels between sick and healthy individuals. We also measured epigenetic modifications in chronic lymphocytic leukemia and observed a decrease in both modification levels (5-hydroxymethylcytosine: whole blood 30 %; peripheral blood mononuclear cells (PBMCs) 40 %. 5-methylcytosine: whole blood 53 %; PBMCs 48 %). Our findings propose using a simple blood test as a viable method for analysis, simplifying sample handling in diagnostics. Importantly, our results highlight the assay's potential for epigenetic evaluation of clinical samples, benefiting research and patient management.


Asunto(s)
5-Metilcitosina , Leucocitos Mononucleares , Humanos , 5-Metilcitosina/análisis , Fluorescencia , Leucocitos Mononucleares/química , Metilación de ADN , ADN/genética , Genómica
2.
ACS Nano ; 17(10): 9178-9187, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37154345

RESUMEN

Proteins and enzymes in the cell nucleus require physical access to their DNA target sites in order to perform genomic tasks such as gene activation and transcription. Hence, chromatin accessibility is a central regulator of gene expression, and its genomic profile holds essential information on the cell type and state. We utilized the E. coli Dam methyltransferase in combination with a fluorescent cofactor analogue to generate fluorescent tags in accessible DNA regions within the cell nucleus. The accessible portions of the genome are then detected by single-molecule optical genome mapping in nanochannel arrays. This method allowed us to characterize long-range structural variations and their associated chromatin structure. We show the ability to create whole-genome, allele-specific chromatin accessibility maps composed of long DNA molecules extended in silicon nanochannels.


Asunto(s)
Cromatina , Escherichia coli , Escherichia coli/genética , ADN/genética , Mapeo Cromosómico/métodos
3.
Bioinformatics ; 39(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36929928

RESUMEN

MOTIVATION: Efficient tapping into genomic information from a single microscopic image of an intact DNA molecule is an outstanding challenge and its solution will open new frontiers in molecular diagnostics. Here, a new computational method for optical genome mapping utilizing deep learning is presented, termed DeepOM. Utilization of a convolutional neural network, trained on simulated images of labeled DNA molecules, improves the success rate in the alignment of DNA images to genomic references. RESULTS: The method is evaluated on acquired images of human DNA molecules stretched in nano-channels. The accuracy of the method is benchmarked against state-of-the-art commercial software Bionano Solve. The results show a significant advantage in alignment success rate for molecules shorter than 50 kb. DeepOM improves the yield, sensitivity, and throughput of optical genome mapping experiments in applications of human genomics and microbiology. AVAILABILITY AND IMPLEMENTATION: The source code for the presented method is publicly available at https://github.com/yevgenin/DeepOM.


Asunto(s)
Aprendizaje Profundo , Humanos , Genómica/métodos , Mapeo Restrictivo , Programas Informáticos , ADN , Genoma Humano
4.
Nucleic Acids Res ; 50(16): e92, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35657088

RESUMEN

DNA methylation, specifically, methylation of cytosine (C) nucleotides at the 5-carbon position (5-mC), is the most studied and significant epigenetic modification. Here we developed a chemoenzymatic procedure to fluorescently label non-methylated cytosines in CpG context, allowing epigenetic profiling of single DNA molecules spanning hundreds of thousands of base pairs. We used a CpG methyltransferase with a synthetic S-adenosyl-l-methionine cofactor analog to transfer an azide to cytosines instead of the natural methyl group. A fluorophore was then clicked onto the DNA, reporting on the amount and position of non-methylated CpGs. We found that labeling efficiency was increased up to 2-fold by the addition of a nucleosidase, presumably by degrading the inactive by-product of the cofactor after labeling, preventing its inhibitory effect. We used the method to determine the decline in global DNA methylation in a chronic lymphocytic leukemia patient and then performed whole-genome methylation mapping of the model plant Arabidopsis thaliana. Our genome maps show high concordance with published bisulfite sequencing methylation maps. Although mapping resolution is limited by optical detection to 500-1000 bp, the labeled DNA molecules produced by this approach are hundreds of thousands of base pairs long, allowing access to long repetitive and structurally variable genomic regions.


Asunto(s)
Arabidopsis , Metilación de ADN , Arabidopsis/genética , Arabidopsis/metabolismo , Islas de CpG/genética , Citosina , ADN/genética , ADN/metabolismo , Epigénesis Genética , Epigenómica , Humanos , Análisis de Secuencia de ADN/métodos , Sulfitos
5.
Biophys Rep (N Y) ; 1(2): None, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34939047

RESUMEN

Mapping DNA damage and its repair has immense potential in understanding environmental exposures, their genotoxicity, and their impact on human health. Monitoring changes in genomic stability also aids in the diagnosis of numerous DNA-related diseases, such as cancer, and assists in monitoring their progression and prognosis. Developments in recent years have enabled unprecedented sensitivity in quantifying the global DNA damage dose in cells via fluorescence-based analysis down to the single-molecule level. However, genome-wide maps of DNA damage distribution are challenging to produce. Here, we describe the localization of DNA damage and repair loci by repair-assisted damage detection sequencing (RADD-seq). Based on the enrichment of damage lesions coupled with a pull-down assay and followed by next-generation sequencing, this method is easy to perform and can produce compelling results with minimal coverage. RADD-seq enables the localization of both DNA damage and repair sites for a wide range of single-strand damage types. Using this technique, we created a genome-wide map of the oxidation DNA damage lesion 8-oxo-7,8-dihydroguanine before and after repair. Oxidation lesions were heterogeneously distributed along the human genome, with less damage occurring in tight chromatin regions. Furthermore, we showed repair is prioritized for highly expressed, essential genes and in open chromatin regions. RADD-seq sheds light on cellular repair mechanisms and is capable of identifying genomic hotspots prone to mutation.

6.
Bioinformatics ; 37(Suppl_1): i327-i333, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34252972

RESUMEN

MOTIVATION: While promoter methylation is associated with reinforcing fundamental tissue identities, the methylation status of distant enhancers was shown by genome-wide association studies to be a powerful determinant of cell-state and cancer. With recent availability of long reads that report on the methylation status of enhancer-promoter pairs on the same molecule, we hypothesized that probing these pairs on the single-molecule level may serve the basis for detection of rare cancerous transformations in a given cell population. We explore various analysis approaches for deconvolving cell-type mixtures based on their genome-wide enhancer-promoter methylation profiles. RESULTS: To evaluate our hypothesis we examine long-read optical methylome data for the GM12878 cell line and myoblast cell lines from two donors. We identified over 100 000 enhancer-promoter pairs that co-exist on at least 30 individual DNA molecules. We developed a detailed methodology for mixture deconvolution and applied it to estimate the proportional cell compositions in synthetic mixtures. Analysis of promoter methylation, as well as enhancer-promoter pairwise methylation, resulted in very accurate estimates. In addition, we show that pairwise methylation analysis can be generalized from deconvolving different cell types to subtle scenarios where one wishes to resolve different cell populations of the same cell-type. AVAILABILITY AND IMPLEMENTATION: The code used in this work to analyze single-molecule Bionano Genomics optical maps is available via the GitHub repository https://github.com/ebensteinLab/Single_molecule_methylation_in_EP.


Asunto(s)
Metilación de ADN , Estudio de Asociación del Genoma Completo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Línea Celular , Elementos de Facilitación Genéticos , Genómica , Humanos
7.
Essays Biochem ; 65(1): 51-66, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33739394

RESUMEN

The human genome contains multiple layers of information that extend beyond the genetic sequence. In fact, identical genetics do not necessarily yield identical phenotypes as evident for the case of two different cell types in the human body. The great variation in structure and function displayed by cells with identical genetic background is attributed to additional genomic information content. This includes large-scale genetic aberrations, as well as diverse epigenetic patterns that are crucial for regulating specific cell functions. These genetic and epigenetic patterns operate in concert in order to maintain specific cellular functions in health and disease. Single-molecule optical genome mapping is a high-throughput genome analysis method that is based on imaging long chromosomal fragments stretched in nanochannel arrays. The access to long DNA molecules coupled with fluorescent tagging of various genomic information presents a unique opportunity to study genetic and epigenetic patterns in the genome at a single-molecule level over large genomic distances. Optical mapping entwines synergistically chemical, physical, and computational advancements, to uncover invaluable biological insights, inaccessible by sequencing technologies. Here we describe the method's basic principles of operation, and review the various available mechanisms to fluorescently tag genomic information. We present some of the recent biological and clinical impact enabled by optical mapping and present recent approaches for increasing the method's resolution and accuracy. Finally, we discuss how multiple layers of genomic information may be mapped simultaneously on the same DNA molecule, thus paving the way for characterizing multiple genomic observables on individual DNA molecules.


Asunto(s)
Genoma Humano , Nanotecnología , Mapeo Cromosómico/métodos , Genómica/métodos , Humanos , Nanotecnología/métodos , Análisis de Secuencia de ADN/métodos
8.
Anal Chem ; 92(14): 9887-9894, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32578422

RESUMEN

Knowing the amount and type of DNA damage is of great significance for a broad range of clinical and research applications. However, existing methods are either lacking in their ability to distinguish between types of DNA damage or limited in their sensitivity and reproducibility. The method described herein enables rapid and robust quantification of type-specific single-strand DNA damage. The method is based on repair-assisted damage detection (RADD) by which fluorescent nucleotides are incorporated into DNA damage sites using type-specific repair enzymes. Up to 90 DNA samples are then deposited on a multiwell glass slide, and analyzed by a conventional slide scanner for quantification of DNA damage levels. Accurate and sensitive measurements of oxidative or UV-induced DNA damage levels and repair kinetics are presented for both in vitro and in vivo models.


Asunto(s)
Daño del ADN/efectos de la radiación , Reparación del ADN , Animales , Bromuros , Línea Celular Tumoral , ADN de Cadena Simple , Humanos , Ratones , Oxidación-Reducción , Compuestos de Potasio , Reproducibilidad de los Resultados , Rayos Ultravioleta
9.
Int J Cancer ; 146(1): 115-122, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31211411

RESUMEN

Epigenetic transformations may provide early indicators for cancer and other disease. Specifically, the amount of genomic 5-hydroxymethylcytosine (5-hmC) was shown to be globally reduced in a wide range of cancers. The integration of this global biomarker into diagnostic workflows is hampered by the limitations of current 5-hmC quantification methods. Here we present and validate a fluorescence-based platform for high-throughput and cost-effective quantification of global genomic 5-hmC levels. We utilized the assay to characterize cancerous tissues based on their 5-hmC content, and observed a pronounced reduction in 5-hmC level in various cancer types. We present data for glioblastoma, colorectal cancer, multiple myeloma, chronic lymphocytic leukemia and pancreatic cancer, compared to corresponding controls. Potentially, the technique could also be used to follow response to treatment for personalized treatment selection. We present initial proof-of-concept data for treatment of familial adenomatous polyposis.


Asunto(s)
5-Metilcitosina/análogos & derivados , Biomarcadores de Tumor/metabolismo , Epigénesis Genética , Ensayos Analíticos de Alto Rendimiento/métodos , Neoplasias/genética , 5-Metilcitosina/metabolismo , Animales , Análisis Costo-Beneficio , Fluorescencia , Ensayos Analíticos de Alto Rendimiento/economía , Humanos , Ratones , Neoplasias/clasificación , Prueba de Estudio Conceptual
10.
Genome Res ; 29(4): 646-656, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30846530

RESUMEN

We report on the development of a methylation analysis workflow for optical detection of fluorescent methylation profiles along chromosomal DNA molecules. In combination with Bionano Genomics genome mapping technology, these profiles provide a hybrid genetic/epigenetic genome-wide map composed of DNA molecules spanning hundreds of kilobase pairs. The method provides kilobase pair-scale genomic methylation patterns comparable to whole-genome bisulfite sequencing (WGBS) along genes and regulatory elements. These long single-molecule reads allow for methylation variation calling and analysis of large structural aberrations such as pathogenic macrosatellite arrays not accessible to single-cell second-generation sequencing. The method is applied here to study facioscapulohumeral muscular dystrophy (FSHD), simultaneously recording the haplotype, copy number, and methylation status of the disease-associated, highly repetitive locus on Chromosome 4q.


Asunto(s)
Metilación de ADN , Análisis de Secuencia de ADN/métodos , Variación Genética , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Análisis de Secuencia de ADN/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...