Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Res ; 27(1): 111, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932837

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies. METHODS: To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells. RESULTS: The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse. CONCLUSIONS: Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.

2.
Dev Biol ; 443(1): 78-91, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30189195

RESUMEN

Maternal undernutrition during pregnancy (MUN) often leads to low birth weight (LBW) neonates that have a reduced total nephron endowment, leaving these neonates susceptible to kidney disease throughout their lives. For reasons unknown, these LBW neonates have impaired kidney development due to a severe reduction in renal SIX2+ stem cells during nephrogenesis. Using a mouse model of MUN, we investigated SIX2+ stem cell reduction in the LBW neonate. Significant upregulation of the protein fetuin-B (measured by PCR and immunoblotting) in the MUN mother's placenta, organs and circulation yielded a 3-fold increase of this protein in the embryonic kidney. Recombinant fetuin-B, administered to healthy pregnant mothers at the concentration equivalent to that in the MUN mother, crossed the placenta and reduced both SIX2+ stem cells by 50% and nephron formation by 66% in embryonic kidneys (measured by immunofluorescence and the physical dissector/fractionator stereological method). Administration of fetuin-B to kidney explants yielded similar reductions in renal SIX2+ stem cells and nephron formation. Fetuin-B treatment of isolated embryonic renal SIX2+ stem cell primary cultures 1) increased NF-kB activity and apoptosis, 2) reduced cell proliferation due to upregulated p21 nuclear activity and subsequent cell cycle arrest, and 3) enhanced generation of reactive oxygen species (measured by fluorescence microscopy). In conclusion, MUN increases fetuin-B in the developing embryonic kidney. The increase in fetuin-B blunts nephrogenesis by reducing SIX2+ stem cells by promoting their apoptosis (via NF-kB upregulation), blunting their proliferative renewal (via p21 upregulation) and enhancing oxidative stress.


Asunto(s)
Trastornos Nutricionales en el Feto/metabolismo , Fetuína-B/metabolismo , Riñón/embriología , Animales , Apoptosis/fisiología , Células Madre Embrionarias/metabolismo , Femenino , Trastornos Nutricionales en el Feto/genética , Proteínas de Homeodominio/metabolismo , Recién Nacido de Bajo Peso/fisiología , Riñón/metabolismo , Masculino , Salud Materna , Ratones , Nefronas/embriología , Nefronas/metabolismo , Estrés Oxidativo/fisiología , Embarazo , Cultivo Primario de Células , Factores de Transcripción/metabolismo , Regulación hacia Arriba
3.
Am J Physiol Renal Physiol ; 315(3): F583-F594, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29846114

RESUMEN

Maternal undernutrition (MUN) during pregnancy leads to low-birth weight (LBW) neonates that have a reduced kidney nephron endowment and higher morbidity as adults. Using a severe combined caloric and protein-restricted mouse model of MUN to generate LBW mice, we examined the progression of renal insufficiency in LBW adults. Through 6 mo of age, LBW males experienced greater albuminuria (ELISA analysis), a more rapid onset of glomerular hypertrophy, and a worse survival rate than LBW females. In contrast, both sexes experienced a comparable progressive decline in renal vascular density (immunofluorescence analysis), renal blood flow (Laser-Doppler flowmetry analysis), glomerular filtration rate (FITC-sinistrin clearance analysis), and a progressive increase in systemic blood pressure (measured via tail-cuff method). Isolated aortas from both LBW sexes demonstrated reduced vasodilation in response to ACh, indicative of reduced nitric oxide bioavailability and endothelial dysfunction. ELISA and immunofluorescence analysis revealed a significant increase of circulating reactive oxygen species and NADPH oxidase type 4 (NOX4) expression in both LBW sexes, although these increases were more pronounced in males. Although more effective in males, chronic tempol treatment did improve all observed pathologies in both sexes of LBW mice. Chronic NOX4 inhibition with GKT137831 was more effective than tempol in preventing pathologies in LBW males. In conclusion, despite some minor differences, LBW female and male adults have a reduced nephron endowment comparable with progressive renal and vascular dysfunction, which is associated with increased oxidative stress and subsequent endothelial dysfunction. Tempol treatment and/or NOX4 inhibition attenuates renal and vascular dysfunction in LBW adults.


Asunto(s)
Peso al Nacer , Tasa de Filtración Glomerular , Enfermedades Renales/fisiopatología , Riñón/fisiopatología , Desnutrición/fisiopatología , Estrés Oxidativo , Efectos Tardíos de la Exposición Prenatal , Factores de Edad , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Restricción Calórica , Óxidos N-Cíclicos/farmacología , Dieta con Restricción de Proteínas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Tasa de Filtración Glomerular/efectos de los fármacos , Hemodinámica , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/prevención & control , Masculino , Desnutrición/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , NADPH Oxidasa 4/antagonistas & inhibidores , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo/efectos de los fármacos , Embarazo , Pirazoles/farmacología , Pirazolonas , Piridinas/farmacología , Piridonas , Circulación Renal , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...