Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 34(18)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-34544070

RESUMEN

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all.

2.
Science ; 337(6091): 209-12, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22798609

RESUMEN

The movement of dislocations in a crystal is the key mechanism for plastic deformation in all materials. Studies of dislocations have focused on three-dimensional materials, and there is little experimental evidence regarding the dynamics of dislocations and their impact at the atomic level on the lattice structure of graphene. We studied the dynamics of dislocation pairs in graphene, recorded with single-atom sensitivity. We examined stepwise dislocation movement along the zig-zag lattice direction mediated either by a single bond rotation or through the loss of two carbon atoms. The strain fields were determined, showing how dislocations deform graphene by elongation and compression of C-C bonds, shear, and lattice rotations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...