Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Intervalo de año de publicación
1.
Genet Mol Biol ; 46(3 Suppl 1): e20230171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38372977

RESUMEN

Anther development is a complex process essential for plant reproduction and crop yields. In recent years, significant progress has been made in the identification and characterization of the bHLH transcription factor family involved in anther regulation in rice and Arabidopsis, two extensively studied model plants. Research on bHLH transcription factors has unveiled their crucial function in controlling tapetum development, pollen wall formation, and other anther-specific processes. By exploring deeper into regulatory mechanisms governing anther development and bHLH transcription factors, we can gain important insights into plant reproduction, thereby accelerating crop yield improvement and the development of new plant breeding strategies. This review provides an overview of the current knowledge on anther development in rice and Arabidopsis, emphasizing the critical roles played by bHLH transcription factors in this process. Recent advances in gene expression analysis and functional studies are highlighted, as they have significantly enhanced our understanding of the regulatory networks involved in anther development.

2.
Plant Physiol Biochem ; 203: 108066, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37797384

RESUMEN

We have previously shown that rice plants silenced for peroxisomal ascorbate peroxidase (OsAPX4-RNAi) display higher resilience to photosynthesis under oxidative stress and photorespiratory conditions. However, the redox mechanisms underlying that intriguing response remain unknown. Here, we tested the hypothesis that favorable effects triggered by peroxisomal APX deficiency on photosynthesis resilience under CAT inhibition are dependent on the intensity of photorespiration associated with the abundance of photosynthetic and redox proteins. Non-transformed (NT) and OsAPX4-RNAi silenced rice plants were grown under ambient (AC) or high CO2 (HC) conditions and subjected to 3-amino-1,2,4-triazole (3-AT)-mediated CAT activity inhibition. Photosynthetic measurements evidenced that OsAPX4-RNAi plants simultaneously exposed to CAT inhibition and HC lost the previously acquired advantage in photosynthesis resilience displayed under AC. Silenced plants exposed to environment photorespiration and CAT inhibition presented lower photorespiration as indicated by smaller Gly/Ser and Jo/Jc ratios and glycolate oxidase activity. Interestingly, when these silenced plants were exposed to HC and CAT-inhibition, they exhibited an inverse response compared to AC in terms of photorespiration indicators, associated with higher accumulation of proteins. Multivariate and correlation network analyses suggest that the proteomics changes induced by HC combined with CAT inhibition are substantially different between NT and OsAPX4-RNAi plants. Our results suggest that the intensity of photorespiration and peroxisomal APX-mediated redox signaling are tightly regulated under CAT inhibition induced oxidative stress, which can modulate the photosynthetic efficiency, possibly via a coordinated regulation of protein abundance and rearrangement, ultimately triggered by crosstalk involving H2O2 levels related to CAT and APX activities in peroxisomes.


Asunto(s)
Oryza , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotosíntesis , Estrés Oxidativo , Plantas/metabolismo , Ascorbato Peroxidasas/metabolismo
3.
Proteins ; 91(7): 944-955, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36840694

RESUMEN

Intrinsically disordered proteins (IDPs) have numerous dynamic conformations. Given the difficulties in tracking temporarily folded states of this kind of protein, methods such as molecular modeling and molecular dynamics (MD) simulations make the process less costly, less laborious, and more detailed. Few plant IDPs have been characterized so far, such as proteins from the Abscisic acid, Stress and Ripening (ASR) family. The present work applied, for the first time, the two above-mentioned tools to test the feasibility of determining a three-dimensional transition model of OsASR5 and to investigate the relationship between OsASR5 and zinc. We found that one of OsASR5's conformers contains α-helices, turns, and loops and that the metal binding resulted in a predominance of α-helix. This stability is possibly imperative for the transcription factor activity. The promoter region of a sugar transporter was chosen to test this hypothesis and free energy calculations showed how the ion is mandatory for this complex formation. The results produced here aim to clarify which conformation the protein in the bound state assumes and which residues are involved in the process, besides developing the understanding of how the flexibility of these proteins can contribute to the response to environmental stresses.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Simulación de Dinámica Molecular , Zinc , Proteínas Intrínsecamente Desordenadas/química , Entropía , Regiones Promotoras Genéticas , Conformación Proteica
4.
Antioxidants (Basel) ; 12(2)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36829946

RESUMEN

Chloroplast ascorbate peroxidases exert an important role in the maintenance of hydrogen peroxide levels in chloroplasts by using ascorbate as the specific electron donor. In this work, we performed a functional study of the stromal APX in rice (OsAPX7) and demonstrated that silencing of OsAPX7 did not impact plant growth, redox state, or photosynthesis parameters. Nevertheless, when subjected to drought stress, silenced plants (APX7i) show a higher capacity to maintain stomata aperture and photosynthesis performance, resulting in a higher tolerance when compared to non-transformed plants. RNA-seq analyses indicate that the silencing of OsAPX7 did not lead to changes in the global expression of genes related to reactive oxygen species metabolism. In addition, the drought-mediated induction of several genes related to the proteasome pathway and the down-regulation of genes related to nitrogen and carotenoid metabolism was impaired in APX7i plants. During drought stress, APX7i showed an up-regulation of genes encoding flavonoid and tyrosine metabolism enzymes and a down-regulation of genes related to phytohormones signal transduction and nicotinate and nicotinamide metabolism. Our results demonstrate that OsAPX7 might be involved in signaling transduction pathways related to drought stress response, contributing to the understanding of the physiological role of chloroplast APX isoforms in rice.

5.
Genet Mol Biol ; 46(1 Suppl 1): e20220097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36512712

RESUMEN

The diversity of diacylglycerol acyltransferases (DGATs) indicates alternative roles for these enzymes in plant metabolism besides triacylglycerol (TAG) biosynthesis. In this work, we functionally characterized castor bean (Ricinus communis L.) DGATs assessing their subcellular localization, expression in seeds, capacity to restore triacylglycerol (TAG) biosynthesis in mutant yeast and evaluating whether they provide tolerance over free fatty acids (FFA) in sensitive yeast. RcDGAT3 displayed a distinct subcellular localization, located in vesicles outside the endoplasmic reticulum (ER) in most leaf epidermal cells. This enzyme was unable to restore TAG biosynthesis in mutant yeast; however, it was able to outperform other DGATs providing higher tolerance over FFA. RcDAcTA subcellular localization was associated with the ER membranes, resembling RcDGAT1 and RcDGAT2, but it failed to rescue the long-chain TAG biosynthesis in mutant yeast, even with fatty acid supplementation. Besides TAG biosynthesis, our results suggest that RcDGAT3 might have alternative functions and roles in lipid metabolism.

6.
Genet Mol Biol ; 46(1 Suppl 1): e20220153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36512713

RESUMEN

Ascorbate peroxidases (APXs) are heme peroxidases involved in the control of hydrogen peroxide levels and signal transduction pathways related to development and stress responses. Here, a total of 238 APX, 30 APX-related (APX-R), and 34 APX-like (APX-L) genes were identified from 24 species from the Poaceae family. Phylogenetic analysis of APX indicated five distinct clades, equivalent to cytosolic (cAPX), peroxisomal (pAPX), mitochondrial (mitAPX), stromal (sAPX), and thylakoidal (tAPX) isoforms. Duplication events contributed to the expansion of this family and the divergence times. Different from other APX isoforms, the emergence of Poaceae mitAPXs occurred independently after eudicot and monocot divergence. Our results showed that the constitutive silencing of mitAPX genes is not viable in rice plants, suggesting that these isoforms are essential for rice regeneration or development. We also obtained rice plants silenced individually to sAPX isoforms, demonstrating that, different to plants double silenced to both sAPX and tAPX or single silenced to tAPX previously obtained, these plants do not show changes in the total APX activity and hydrogen peroxide content in the shoot. Among rice plants silenced to different isoforms, plants silenced to cAPX showed a higher decrease in total APX activity and an increase in hydrogen peroxide levels. These results suggest that the cAPXs are the main isoforms responsible for regulating hydrogen peroxide levels in the cell, whereas in the chloroplast, this role is provided mainly by the tAPX isoform. In addition to broadening our understanding of the core components of the antioxidant defense in Poaceae species, the present study also provides a platform for their functional characterization.

7.
FEBS Lett ; 596(23): 2989-3004, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35776057

RESUMEN

Ascorbate peroxidases (APXs) are heme peroxidases that remove hydrogen peroxide in different subcellular compartments with concomitant ascorbate cycling. Here, we analysed and discussed phylogenetic and molecular features of the APX family. Ancient APX originated as a soluble stromal enzyme, and early during plant evolution, acquired both chloroplast-targeting and mitochondrion-targeting sequences and an alternative splicing mechanism whereby it could be expressed as a soluble or thylakoid membrane-bound enzyme. Later, independent duplication and neofunctionalization events in some angiosperm groups resulted in individual genes encoding stromal, thylakoidal and mitochondrial isoforms. These data reaffirm the complexity of plant antioxidant defenses that allow diverse plant species to acquire new means to adapt to changing environmental conditions.


Asunto(s)
Peroxidasas , Tilacoides , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Tilacoides/metabolismo , Filogenia , Peroxidasas/genética , Peroxidasas/metabolismo , Cloroplastos/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes , Regulación de la Expresión Génica de las Plantas
8.
Biochim Biophys Acta Bioenerg ; 1863(6): 148559, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413247

RESUMEN

Although mitochondria have a central role in energy transduction and reactive oxygen species (ROS) production, the regulatory mechanisms and their involvement in plant stress signaling are not fully established. The phytohormone salicylic acid (SA) is an important regulator of mitochondria-mediated ROS production and defense signaling. The role of SA and adenine nucleotides in the regulation of the mitochondrial succinate dehydrogenase (SDH) complex activity and ROS production was analyzed using WT, RNAi SDH1-1 and disrupted stress response 1 (dsr1) mutants, which show a point mutation in SDH1 subunit and are defective in SA signaling. Our results showed that SA and adenine nucleotides regulate SDH complex activity by distinct patterns, contributing to increased SDH-derived ROS production. As previously demonstrated, SA induces the succinate-quinone reductase activity of SDH complex, acting at or near the ubiquinone binding site. On the other hand, here we demonstrated that adenine nucleotides, such as AMP, ADP and ATP, induce the SDH activity provided by the SDH1 subunit. The regulation of SDH activity by adenine nucleotides is dependent on mitochondrial integrity and is prevented by atractyloside, an inhibitor of adenine nucleotide translocator (ANT), suggesting that the regulatory mechanism occurs on the mitochondrial matrix side of the inner mitochondrial membrane, and not in the intermembrane space, as previously suggested. On the other hand, in the intermembrane space, ADP and ATP limit mitochondrial oxygen consumption by a mechanism that appears to be related to cytochrome bc1 complex inhibition. Altogether, these results indicate that SA signaling and adenine nucleotides regulate the mitochondrial electron transport system and mitochondria-derived ROS production by direct effect in the electron transport system complexes, bringing new insights into mechanisms with direct implications in plant development and responses to different environmental responses, serving as a starting point for future physiological explorations.


Asunto(s)
Mitocondrias , Ácido Salicílico , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Transporte de Electrón , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología
9.
Biology (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36671712

RESUMEN

Ascorbate peroxidase (APX), Monodehydroascorbate Reductase (MDAR), Dehydroascorbate Reductase (DHAR) and Glutathione Reductase (GR) enzymes participate in the ascorbate-glutathione cycle, which exerts a central role in the antioxidant metabolism in plants. Despite the importance of this antioxidant system in different signal transduction networks related to development and response to environmental stresses, the pathway has not yet been comprehensively characterized in many crop plants. Among different eudicotyledons, the Euphorbiaceae family is particularly diverse with some species highly tolerant to drought. Here the APX, MDAR, DHAR, and GR genes in Ricinus communis, Jatropha curcas, Manihot esculenta, and Hevea brasiliensis were identified and characterized. The comprehensive phylogenetic and genomic analyses allowed the classification of the genes into different classes, equivalent to cytosolic, peroxisomal, chloroplastic, and mitochondrial enzymes, and revealed the duplication events that contribute to the expansion of these families within plant genomes. Due to the high drought stress tolerance of Ricinus communis, the expression patterns of ascorbate-glutathione cycle genes in response to drought were also analyzed in leaves and roots, indicating a differential expression during the stress. Altogether, these data contributed to the characterization of the expression pattern and evolutionary analysis of these genes, filling the gap in the proposed functions of core components of the antioxidant mechanism during stress response in an economically relevant group of plants.

10.
Biology (Basel) ; 10(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34827158

RESUMEN

There is large diversity among glutathione peroxidase (GPx) enzymes regarding their function, structure, presence of the highly reactive selenocysteine (SeCys) residue, substrate usage, and reducing agent preference. Moreover, most vertebrate GPxs are very distinct from non-animal GPxs, and it is still unclear if they came from a common GPx ancestor. In this study, we aimed to unveil how GPx evolved throughout different phyla. Based on our phylogenetic trees and sequence analyses, we propose that all GPx encoding genes share a monomeric common ancestor and that the SeCys amino acid was incorporated early in the evolution of the metazoan kingdom. In addition, classical GPx and the cysteine-exclusive GPx07 have been present since non-bilaterian animals, but they seem to have been lost throughout evolution in different phyla. Therefore, the birth-and-death of GPx family members (like in other oxidoreductase families) seems to be an ongoing process, occurring independently across different kingdoms and phyla.

11.
Antioxidants (Basel) ; 10(4)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924520

RESUMEN

Ascorbate peroxidases (APX) are class I members of the Peroxidase-Catalase superfamily, a large group of evolutionarily related but rather divergent enzymes. Through mining in public databases, unusual subsets of APX homologs were identified, disclosing the existence of two yet uncharacterized families of peroxidases named ascorbate peroxidase-related (APX-R) and ascorbate peroxidase-like (APX-L). As APX, APX-R harbor all catalytic residues required for peroxidatic activity. Nevertheless, proteins of this family do not contain residues known to be critical for ascorbate binding and therefore cannot use it as an electron donor. On the other hand, APX-L proteins not only lack ascorbate-binding residues, but also every other residue known to be essential for peroxidase activity. Through a molecular phylogenetic analysis performed with sequences derived from basal Archaeplastida, the present study discloses the existence of hybrid proteins, which combine features of these three families. The results here presented show that the prevalence of hybrid proteins varies among distinct groups of organisms, accounting for up to 33% of total APX homologs in species of green algae. The analysis of this heterogeneous group of proteins sheds light on the origin of APX-R and APX-L and suggests the occurrence of a process characterized by the progressive deterioration of ascorbate-binding and catalytic sites towards neofunctionalization.

12.
Antioxidants (Basel) ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430242

RESUMEN

Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide, thus minimizing cell injury and modulating signaling pathways as response to this reactive oxygen species. Using a phylogenetic approach, we previously identified a new peroxidase family composed of a small subset of ascorbate peroxidase (APx) homologs with distinguished features, which we named ascorbate peroxidase-related (APx-R). In this study, we showed that APx-R is an ascorbate-independent heme peroxidase. Despite being annotated as a cytosolic protein in public databases, transient expression of AtAPx-R-YFP in Arabidopsis thaliana protoplasts and stable overexpression in plants showed that the protein is targeted to plastids. To characterize APx-R participation in the antioxidant metabolism, we analyzed loss-of-function mutants and AtAPx-R overexpressing lines. Molecular analysis showed that glutathione peroxidase 7 (GPx07) is specifically induced to compensate the absence of APx-R. APx-R overexpressing lines display faster germination rates, further confirming the involvement of APx-R in seed germination. The constitutive overexpression of AtAPx-R-YFP unraveled the existence of a post-translational mechanism that eliminates APx-R from most tissues, in a process coordinated with photomorphogenesis. Our results show a direct role of APx-R during germinative and post-germinative development associated with etioplasts differentiation.

13.
J Exp Bot ; 72(6): 2242-2259, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33035327

RESUMEN

Iron (Fe) toxicity is one of the most common mineral disorders affecting rice (Oryza sativa) production in flooded lowland fields. Oryza meridionalis is indigenous to northern Australia and grows in regions with Fe-rich soils, making it a candidate for use in adaptive breeding. With the aim of understanding tolerance mechanisms in rice, we screened a population of interspecific introgression lines from a cross between O. sativa and O. meridionalis for the identification of quantitative trait loci (QTLs) contributing to Fe-toxicity tolerance. Six putative QTLs were identified. A line carrying one introgression from O. meridionalis on chromosome 9 associated with one QTL was highly tolerant despite very high shoot Fe concentrations. Physiological, biochemical, ionomic, and transcriptomic analyses showed that the tolerance of the introgression lines could partly be explained by higher relative Fe retention in the leaf sheath and culm. We constructed the interspecific hybrid genome in silico for transcriptomic analysis and identified differentially regulated introgressed genes from O. meridionalis that could be involved in shoot-based Fe tolerance, such as metallothioneins, glutathione S-transferases, and transporters from the ABC and MFS families. This work demonstrates that introgressions of O. meridionalis into the O. sativa genome can confer increased tolerance to excess Fe.


Asunto(s)
Oryza , Australia , Hierro , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
14.
J Proteomics ; 232: 104029, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33160103

RESUMEN

Different environmental conditions can lead plants to a condition termed oxidative stress, which is characterized by a disruption in the equilibrium between the production of reactive oxygen species (ROS) and antioxidant defenses. Glutathione peroxidase (GPX), an enzyme that acts as a peroxide scavenger in different organisms, has been identified as an important component in the signaling pathway during the developmental process and in stress responses in plants and yeast. Here, we demonstrate that the mitochondrial isoform of rice (Oryza sativa L. ssp. Japonica cv. Nipponbare) OsGPX3 is induced after treatment with the phytohormone abscisic acid (ABA) and is involved in its responses and in epigenetic modifications. Plants that have been silenced for OsGPX3 (gpx3i) present substantial changes in the accumulation of proteins related to these processes. These plants also have several altered ABA responses, such as germination, ROS accumulation, stomatal closure, and dark-induced senescence. This study is the first to demonstrate that OsGPX3 plays a role in ABA signaling and corroborate that redox homeostasis enzymes can act in different and complex pathways in plant cells. SIGNIFICANCE: This work proposes the mitochondrial glutathione peroxidase (OsGPX3) as a novel ABA regulatory pathway component. Our results suggest that this antioxidant enzyme is involved in ABA-responses, highlighting the complex pathways that these proteins can participate beyond the regulation of cellular redox status.


Asunto(s)
Ácido Abscísico , Glutatión Peroxidasa/metabolismo , Mitocondrias/enzimología , Oryza , Proteínas de Plantas , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas
15.
Plant Sci ; 302: 110716, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288022

RESUMEN

Anther development is a complex process regulated by a myriad of transcription factors belonging to distinct protein families. In this study, we focus on the functional characterization of OsbHLH35, a basic Helix-Loop-Helix (bHLH) TF that regulates anther development in rice. Plants overexpressing OsbHLH35 presented small and curved anthers, leading to a reduction of 72 % on seed production. Rice transgenic plants expressing GUS reporter gene under the control of OsbHLH35 promoter (pOsbHLH35::GUS) showed that this TF specifically accumulates in anthers at the meiosis stage and in other spikelet tissues. Yeast one-hybrid screening identified three members of the Growth-Regulating Factor (GRF) family, OsGRF3, OsGRF4, and OsGRF11, as transcriptional regulators of OsbHLH35. Transactivation assay showed that OsGRF11 negatively regulates OsbHLH35 expression in Arabidopsis protoplasts. This regulation was also observed in planta through the analysis of transgenic plants overexpressing OsGRF11 (OsGRF11OE), confirming that OsGRF11 is a negative regulator of OsbHLH35 in rice. Our data suggest that OsbHLH35 plays an essential role in anther development in rice and the fine control of its expression is crucial to ensure proper seed production.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Flores/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo , Técnicas del Sistema de Dos Híbridos
16.
Plant Sci ; 299: 110603, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32900441

RESUMEN

Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.


Asunto(s)
Apoptosis , Arabidopsis/fisiología
17.
Genet Mol Biol ; 43(3): 20200080, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32706846

RESUMEN

- Growth Regulating Factors (GRFs) comprise a transcription factor family with important functions in plant growth and development. They are characterized by the presence of QLQ and WRC domains, responsible for interaction with proteins and DNA, respectively. The QLQ domain is named due to the similarity to a protein interaction domain found in the SWI2/SNF2 chromatin remodeling complex. Despite the occurrence of the QLQ domain in both families, the divergence between them had not been further explored. Here, we show evidence for GRF origin and determined its diversification in angiosperm species. Phylogenetic analysis revealed 11 well-supported groups of GRFs in flowering plants. These groups were supported by gene structure, synteny, and protein domain composition. Synteny and phylogenetic analyses allowed us to propose different sets of probable orthologs in the groups. Besides, our results, together with functional data previously published, allowed us to suggest candidate genes for engineering agronomic traits. In addition, we propose that the QLQ domain of GRF genes evolved from the eukaryotic SNF2 QLQ domain, most likely by a duplication event in the common ancestor of the Charophytes and land plants. Altogether, our results are important for advancing the origin and evolution of the GRF family in Streptophyta.

18.
Plant Cell Rep ; 38(9): 1099-1107, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31127322

RESUMEN

KEY MESSAGE: MdoDHN11 acts in the nucellus layer to protect the embryo and the endosperm from limited water availability during apple seed development. Dehydrins (DHNs) are protective proteins related to several plant developmental responses that involve dehydration such as seed desiccation and abiotic stresses. In apple (Malus × domestica Borkh.), the seed-specific MdoDHN11 was suggested to play important roles against dehydration during seed development. However, this hypothesis has not yet been evaluated. Within this context, several experiments were performed to functionally characterize MdoDHN11. In situ hybridization analysis during apple seed development showed that MdoDHN11 expression is confined to a maternal tissue called nucellus, a central mass of parenchyma between the endosperm and the testa. The MdoDHN11 protein was localized in the cytosol and nucleus. Finally, transgenic Arabidopsis plants expressing MdoDHN11 were generated and exposed to a severe water-deficit stress, aiming to mimic a situation that can occurs during seed development. All transgenic lines showed increased tolerance to water deficit in relation to wild-type plants. Taken together, our results provide evidences that MdoDHN11 plays important roles during apple seed development by protecting the embryo and the endosperm from limited water availability, and the mechanism of action probably involves the interaction of MdoDHN11 with proteins and other components in the cell.


Asunto(s)
Malus/genética , Proteínas de Plantas/metabolismo , Agua/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Deshidratación , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/fisiología , Expresión Génica , Malus/crecimiento & desarrollo , Malus/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología
19.
J Exp Bot ; 70(2): 627-639, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30312463

RESUMEN

Retrograde signalling pathways that are triggered by changes in cellular redox homeostasis remain poorly understood. Transformed rice plants that are deficient in peroxisomal ascorbate peroxidase APX4 (OsAPX4-RNAi) are known to exhibit more effective protection of photosynthesis against oxidative stress than controls when catalase (CAT) is inhibited, but the mechanisms involved have not been characterized. An in-depth physiological and proteomics analysis was therefore performed on OsAPX4-RNAi CAT-inhibited rice plants. Loss of APX4 function led to an increased abundance of several proteins that are involved in essential metabolic pathways, possibly as a result of increased tissue H2O2 levels. Higher photosynthetic activities observed in the OsAPX4-RNAi plants under CAT inhibition were accompanied by higher levels of Rubisco, higher maximum rates of Rubisco carboxylation, and increased photochemical efficiencies, together with large increases in photosynthesis-related proteins. Large increases were also observed in the levels of proteins involved in the ascorbate/glutathione cycle and in other antioxidant-related pathways, and these changes may be important in the protection of photosynthesis in the OsAPX4-RNAi plants. Large increases in the abundance of proteins localized in the nuclei and mitochondria were also observed, together with increased levels of proteins involved in important cellular pathways, particularly protein translation. Taken together, the results show that OsAPX4-RNAi plants exhibit significant metabolic reprogramming, which incorporates a more effective antioxidant response to protect photosynthesis under conditions of impaired CAT activity.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Oryza/metabolismo , Estrés Oxidativo , Fotosíntesis , Interferencia de ARN
20.
J Proteomics ; 192: 125-136, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30170113

RESUMEN

Chloroplast APX isoforms display controversial roles as H2O2 scavengers and signaling players in response to abiotic stress and conclusive results are lacking. We tested the hypothesis that thylakoidal APX displays an important role for drought tolerance, especially by regulating abundance of essential protein species. For this, OsApx8 RNAi-silenced rice (apx8) and non-transformed plants (NT) were exposed to mild water deficit. The drought-sensitivity in apx8 plants was revealed by decreases in shoot growth, relative water content and photosynthesis, which was accompanied by increased membrane damage, all compared to NT plants. This higher sensitivity of apx8 plants to mild drought stress was also related to a lower accumulation of important protein species involved in several metabolic processes, especially photosynthesis, photorespiration and redox metabolism. Despite apx8 plants have displayed an effective induction of compensatory antioxidant mechanisms in well-watered conditions, it was not enough to maintain H2O2 homeostasis and avoid oxidative and physiological disturbances under mild drought conditions. Thus, thylakoidal APX is involved in several phenotypic modifications at proteomic profile level, possibly via a H2O2-induced signaling mechanism. Consequently, this APX isoform is crucial for rice plants effectively cope with a mild drought condition. BIOLOGICAL SIGNIFICANCE: This work provides for the first time an integrative study involving proteomic, physiological and biochemical analyses directed to elucidation of thylakoidal APX roles for drought tolerance in rice plants. Our data reveal that this enzyme is crucial for maintaining of growth and photosynthesis under mild water deficit conditions. This essential role is related to maintaining of H2O2 homeostasis and accumulation of essential proteins involved in several important metabolic pathways. Remarkably, for drought resistance was essential the accumulation of proteins involved with metabolism of photosynthesis, signaling, carbohydrates, protein synthesis/degradation and stress. These results can contribute to understand the role of chloroplast ascorbate peroxidases in drought tolerance, highlighting the physiological importance of key proteins in this process.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Oryza/enzimología , Estrés Oxidativo , Proteínas de Plantas/metabolismo , Tilacoides/enzimología , Deshidratación , Peróxido de Hidrógeno/metabolismo , Fotosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...