Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
bioRxiv ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39091820

RESUMEN

Inhibitors of sodium glucose cotransporter-2 (SGLT2i) demonstrate strong symptomatic and mortality benefits in the treatment of heart failure but appear to do so independently of SGLT2. The relevant pharmacologic target of SGLT2i remains unclear. We show here that SGLT2i directly activate pantothenate kinase 1 (PANK1), the rate-limiting enzyme that initiates the conversion of pantothenate (vitamin B5) to coenzyme-A (CoA), an obligate co-factor for all major pathways of fuel use in the heart. Using stable-isotope infusion studies, we show that SGLT2i promote pantothenate consumption, activate CoA synthesis, rescue decreased levels of CoA in human failing hearts, and broadly stimulate fuel use in ex vivo perfused human cardiac blocks from patients with heart failure. Furthermore, we show that SGLT2i bind to PANK1 directly at physiological concentrations and promote PANK1 enzymatic activity in assays with purified components. Novel in silico dynamic modeling identified the site of SGLT2i binding on PANK1 and indicated a mechanism of activation involving prevention of allosteric inhibition of PANK1 by acyl-CoA species. Finally, we show that inhibition of PANK1 prevents SGLT2i-mediated increased contractility of isolated adult human cardiomyocytes. In summary, we demonstrate robust and specific off-target activation of PANK1 by SGLT2i, promoting CoA synthesis and efficient fuel use in human hearts, providing a likely explanation for the remarkable clinical benefits of SGLT2i.

2.
Sci Transl Med ; 16(756): eadm8842, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018366

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with increased myocardial stiffness and cardiac filling abnormalities. Prior studies implicated increased α-tubulin detyrosination, which is catalyzed by the vasohibin enzymes, as a contributor to increased stabilization of the cardiomyocyte microtubule network (MTN) and stiffness in failing human hearts. We explored whether increased MTN detyrosination contributed to impaired diastolic function in the ZSF1 obese rat model of HFpEF and designed a small-molecule vasohibin inhibitor to ablate MTN detyrosination in vivo. Compared with ZSF1 lean and Wistar Kyoto rats, obese rats exhibited increased tubulin detyrosination concomitant with diastolic dysfunction, left atrial enlargement, and cardiac hypertrophy with a preserved left ventricle ejection fraction, consistent with an HFpEF phenotype. Ex vivo myocardial phenotyping assessed cardiomyocyte mechanics and contractility. Vasohibin inhibitor treatment of isolated cardiomyocytes from obese rats resulted in reduced stiffness and faster relaxation. Acute in vivo treatment with vasohibin inhibitor improved diastolic relaxation in ZSF1 obese rats compared with ZSF1 lean and Wistar Kyoto rats. Vasohibin inhibition also improved relaxation in isolated human cardiomyocytes from both failing and nonfailing hearts. Our data suggest the therapeutic potential for vasohibin inhibition to reduce myocardial stiffness and improve relaxation in HFpEF.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Miocitos Cardíacos , Volumen Sistólico , Animales , Humanos , Masculino , Ratas , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Diástole/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/patología , Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Ratas Endogámicas WKY , Volumen Sistólico/efectos de los fármacos , Tubulina (Proteína)/metabolismo
3.
Circ Genom Precis Med ; 17(3): e004369, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853772

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by sarcomere gene mutations (genotype-positive HCM) in ≈50% of patients and occurs in the absence of mutations (genotype-negative HCM) in the other half of patients. We explored how alterations in the metabolomic and lipidomic landscape are involved in cardiac remodeling in both patient groups. METHODS: We performed proteomics, metabolomics, and lipidomics on myectomy samples (genotype-positive N=19; genotype-negative N=22; and genotype unknown N=6) from clinically well-phenotyped patients with HCM and on cardiac tissue samples from sex- and age-matched and body mass index-matched nonfailing donors (N=20). These data sets were integrated to comprehensively map changes in lipid-handling and energy metabolism pathways. By linking metabolomic and lipidomic data to variability in clinical data, we explored patient group-specific associations between cardiac and metabolic remodeling. RESULTS: HCM myectomy samples exhibited (1) increased glucose and glycogen metabolism, (2) downregulation of fatty acid oxidation, and (3) reduced ceramide formation and lipid storage. In genotype-negative patients, septal hypertrophy and diastolic dysfunction correlated with lowering of acylcarnitines, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines. In contrast, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines were positively associated with septal hypertrophy and diastolic impairment in genotype-positive patients. CONCLUSIONS: We provide novel insights into both general and genotype-specific metabolic changes in HCM. Distinct metabolic alterations underlie cardiac disease progression in genotype-negative and genotype-positive patients with HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Genotipo , Fenotipo , Humanos , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Miocardio/metabolismo , Miocardio/patología , Metabolómica , Proteómica , Lipidómica , Metabolismo de los Lípidos/genética , Sarcómeros/metabolismo , Sarcómeros/genética , Metabolismo Energético/genética , Anciano , Multiómica
4.
Res Sq ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766184

RESUMEN

Cardiac sarcoidosis is poorly understood, challenging to diagnose, and portends a poor prognosis. A lack of animal models necessitates the use of residual human samples to study sarcoidosis, which in turn necessitates the use of analytical tools compatible with archival, fixed tissue. We employed high-plex spatial protein analysis within a large cohort of archival human cardiac sarcoidosis and control tissue samples, studying the immunologic, fibrotic, and metabolic landscape of sarcoidosis at different stages of disease, in different cardiac tissue compartments, and in tissue regions with and without overt inflammation. Utilizing a small set of differentially expressed protein biomarkers, we also report the development of a predictive model capable of accurately discriminating between control cardiac tissue and sarcoidosis tissue, even when no histologic evidence of sarcoidosis is present. This finding has major translational implications, with the potential to markedly improve the diagnostic yield of clinical biopsies obtained from suspected sarcoidosis patients.

5.
Res Sq ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798599

RESUMEN

Both overt and indolent inflammatory insults in heart transplantation can accelerate pathologic cardiac remodeling, but there are few tools for monitoring the speed and severity of remodeling over time. To address this need, we developed an automated computational pathology system to measure pathologic remodeling in transplant biopsy samples in a large, retrospective cohort of n=2167 digitized heart transplant biopsy slides. Biopsy images were analyzed to identify the pathologic stromal changes associated with future allograft loss or advanced allograft vasculopathy. Biopsy images were then analyzed to assess which historical allo-inflammatory events drive progression of these pathologic stromal changes over time in serial biopsy samples. The top-5 features of pathologic stromal remodeling most strongly associated with adverse outcomes were also strongly associated with histories of both overt and indolent inflammatory events. Our findings identify previously unappreciated subgroups of higher- and lower-risk transplant patients, and highlight the translational potential of digital pathology analysis.

6.
Sci Adv ; 10(19): eadh0798, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718107

RESUMEN

Mutations in the LMNA gene encoding lamins A/C cause an array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis underlying cardiac dysfunction remains elusive. Using a novel conditional deletion model capable of translatome profiling, we observed that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Before cardiac dysfunction, Lmna-deleted cardiomyocytes displayed nuclear abnormalities, Golgi dilation/fragmentation, and CREB3-mediated stress activation. Translatome profiling identified MED25 activation, a transcriptional cofactor that regulates Golgi stress. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the Golgi. Systemic administration of modulators of autophagy or ER stress significantly delayed cardiac dysfunction and prolonged survival. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the LMNA cardiomyopathy development.


Asunto(s)
Cardiomiopatías , Lamina Tipo A , Miocitos Cardíacos , Membrana Nuclear , Animales , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Ratones , Membrana Nuclear/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/patología , Cardiomiopatías/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Autofagia , Estrés Fisiológico , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Aparato de Golgi/metabolismo , Ratones Noqueados
7.
JACC Basic Transl Sci ; 9(1): 1-15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362346

RESUMEN

Recent studies suggest that metabolic dysregulation in patients with heart failure might contribute to myocardial contractile dysfunction. To understand the correlation between function and energy metabolism, we studied the impact of different fuel substrates on human nonfailing or failing cardiomyocytes. Consistent with the concept of metabolic flexibility, nonfailing myocytes exhibited excellent contractility in all fuels provided. However, impaired contractility was observed in failing myocytes when carbohydrates alone were used but was improved when additional substrates were added. This study demonstrates the functional significance of fuel utilization shifts in failing human cardiomyocytes.

8.
Basic Res Cardiol ; 119(2): 277-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38349539

RESUMEN

Recognizing that cells "feel" and respond to their mechanical environment, recent studies demonstrate that many cells exhibit a phenomenon of "mechanical memory" in which features induced by prior mechanical cues persist after the mechanical stimulus has ceased. While there is a general recognition that different cell types exhibit different responses to changes in extracellular matrix stiffening, the phenomenon of mechanical memory within myocardial cell types has received little attention to date. To probe the dynamics of mechanical memory in cardiac fibroblasts (CFs) and cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs), we employed a magnetorheological elastomer (MRE) cell culture substrate with tunable and reversible stiffness spanning the range from normal to diseased myocardium. In CFs, using increased cell area and increases in α-smooth muscle actin as markers of cellular responses to matrix stiffening, we found that induction of mechanical memory required seven days of stiff priming. Both induction and maintenance of persistent CF activation were blocked with the F-actin inhibitor cytochalasin D, while inhibitors of microtubule detyrosination had no impact on CFs. In iPSC-CMs, mechanical memory was invoked after only 24 h of stiff priming. Moreover, mechanical memory induction and maintenance were microtubule-dependent in CMs with no dependence on F-actin. Overall, these results identify the distinct temporal dynamics of mechanical memory in CFs and iPSC-CMs with different cytoskeletal mediators responsible for inducing and maintaining the stiffness-activated phenotype. Due to its flexibility, this model is broadly applicable to future studies interrogating mechanotransduction and mechanical memory in the heart and might inform strategies for attenuating the impact of load-induced pathology and excess myocardial stiffness.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Actinas/metabolismo , Mecanotransducción Celular , Diferenciación Celular/fisiología , Fibroblastos/metabolismo
9.
Circ Heart Fail ; 17(2): e010950, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38348670

RESUMEN

BACKGROUND: Cardiac allograft rejection is the leading cause of early graft failure and is a major focus of postheart transplant patient care. While histological grading of endomyocardial biopsy samples remains the diagnostic standard for acute rejection, this standard has limited diagnostic accuracy. Discordance between biopsy rejection grade and patient clinical trajectory frequently leads to both overtreatment of indolent processes and delayed treatment of aggressive ones, spurring the need to investigate the adequacy of the current histological criteria for assessing clinically important rejection outcomes. METHODS: N=2900 endomyocardial biopsy images were assigned a rejection grade label (high versus low grade) and a clinical trajectory label (evident versus silent rejection). Using an image analysis approach, n=370 quantitative morphology features describing the lymphocytes and stroma were extracted from each slide. Two models were constructed to compare the subset of features associated with rejection grades versus those associated with clinical trajectories. A proof-of-principle machine learning pipeline-the cardiac allograft rejection evaluator-was then developed to test the feasibility of identifying the clinical severity of a rejection event. RESULTS: The histopathologic findings associated with conventional rejection grades differ substantially from those associated with clinically evident allograft injury. Quantitative assessment of a small set of well-defined morphological features can be leveraged to more accurately reflect the severity of rejection compared with that achieved by the International Society of Heart and Lung Transplantation grades. CONCLUSIONS: Conventional endomyocardial samples contain morphological information that enables accurate identification of clinically evident rejection events, and this information is incompletely captured by the current, guideline-endorsed, rejection grading criteria.


Asunto(s)
Insuficiencia Cardíaca , Trasplante de Corazón , Humanos , Miocardio/patología , Trasplante de Corazón/efectos adversos , Insuficiencia Cardíaca/patología , Corazón , Aloinjertos , Rechazo de Injerto/diagnóstico , Biopsia
10.
J Card Fail ; 30(2): 391-398, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806488

RESUMEN

There is waning interest among cardiology trainees in pursuing an Advanced Heart Failure/Transplant Cardiology (AHFTC) fellowship as evidenced by fewer applicants in the National Resident Matching Program match to this specialty. This trend has generated considerable attention across the heart failure community. In response, the Heart Failure Society of America convened the AHFTC Fellowship Task Force with a charge to develop strategies to increase the value proposition of an AHFTC fellowship. Subsequently, the HFSA sponsored the AHFTC Fellowship Consensus Conference April 26-27, 2023. Before the conference, interviews of 44 expert stakeholders diverse across geography, site of practice (traditional academic medical center or other centers), specialty/area of expertise, sex, and stage of career were conducted virtually. Based on these interviews, potential solutions to address the declining interest in AHFTC fellowship were categorized into five themes: (1) alternative training pathways, (2) regulatory and compensation, (3) educational improvements, (4) exposure and marketing for pipeline development, and (5) quality of life and mental health. These themes provided structure to the deliberations of the AHFTC Fellowship Consensus Conference. The recommendations from the Consensus Conference were subsequently presented to the HFSA Board of Directors to inform strategic plans and interventions. The HFSA Board of Directors later reviewed and approved submission of this document. The purpose of this communication is to provide the HF community with an update summarizing the processes used and concepts that emerged from the work of the HFSA AHFTC Fellowship Task Force and Consensus Conference.


Asunto(s)
Cardiología , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/cirugía , Becas , Calidad de Vida , Consenso
12.
Res Sq ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045390

RESUMEN

The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy. We derive deep learning-based estimates of left ventricular mass from the cardiac MRI scans of 29,661 individuals enrolled in the UK Biobank. We report epistatic genetic variation including variants close to CCDC141, IGF1R, TTN, and TNKS. Several loci not prioritized by univariate genome-wide association analysis are identified. Functional genomic and integrative enrichment analyses reveal a complex gene regulatory network in which genes mapped from these loci share biological processes and myogenic regulatory factors. Through a network analysis of transcriptomic data from 313 explanted human hearts, we show that these interactions are preserved at the level of the cardiac transcriptome. We assess causality of epistatic effects via RNA silencing of gene-gene interactions in human induced pluripotent stem cell-derived cardiomyocytes. Finally, single-cell morphology analysis using a novel high-throughput microfluidic system shows that cardiomyocyte hypertrophy is non-additively modifiable by specific pairwise interactions between CCDC141 and both TTN and IGF1R. Our results expand the scope of genetic regulation of cardiac structure to epistasis.

13.
medRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37987017

RESUMEN

The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy. We derive deep learning-based estimates of left ventricular mass from the cardiac MRI scans of 29,661 individuals enrolled in the UK Biobank. We report epistatic genetic variation including variants close to CCDC141, IGF1R, TTN, and TNKS. Several loci not prioritized by univariate genome-wide association analysis are identified. Functional genomic and integrative enrichment analyses reveal a complex gene regulatory network in which genes mapped from these loci share biological processes and myogenic regulatory factors. Through a network analysis of transcriptomic data from 313 explanted human hearts, we show that these interactions are preserved at the level of the cardiac transcriptome. We assess causality of epistatic effects via RNA silencing of gene-gene interactions in human induced pluripotent stem cell-derived cardiomyocytes. Finally, single-cell morphology analysis using a novel high-throughput microfluidic system shows that cardiomyocyte hypertrophy is non-additively modifiable by specific pairwise interactions between CCDC141 and both TTN and IGF1R. Our results expand the scope of genetic regulation of cardiac structure to epistasis.

15.
Nucleic Acids Res ; 51(20): 10829-10845, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843128

RESUMEN

DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.


Asunto(s)
Aductos de ADN , ADN , Animales , Femenino , Humanos , Masculino , Ratas , Cromatografía Liquida/métodos , ADN/química , Aductos de ADN/genética , Roedores , Espectrometría de Masas en Tándem/métodos
16.
J Natl Compr Canc Netw ; 21(10): 1039-1049.e10, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856199

RESUMEN

BACKGROUND: Although VEGFR tyrosine kinase inhibitors (TKIs) are a preferred systemic treatment approach for patients with advanced renal cell carcinoma (RCC) and thyroid carcinoma (TC), treatment-related cardiovascular (CV) toxicity is an important contributor to morbidity. However, the clinical risk assessment and impact of CV toxicities, including early significant hypertension, among real-world advanced cancer populations receiving VEGFR TKI therapies remain understudied. METHODS: In a multicenter, retrospective cohort study across 3 large and diverse US health systems, we characterized baseline hypertension and CV comorbidity in patients with RCC and those with TC who are newly initiating VEGFR TKI therapy. We also evaluated baseline patient-, treatment-, and disease-related factors associated with the risk for treatment-related early hypertension (within 6 weeks of TKI initiation) and major adverse CV events (MACE), accounting for the competing risk of death in an advanced cancer population, after VEGFR TKI initiation. RESULTS: Between 2008 and 2020, 987 patients (80.3% with RCC, 19.7% with TC) initiated VEGFR TKI therapy. The baseline prevalence of hypertension was high (61.5% and 53.6% in patients with RCC and TC, respectively). Adverse CV events, including heart failure and cerebrovascular accident, were common (occurring in 14.9% of patients) and frequently occurred early (46.3% occurred within 1 year of VEGFR TKI initiation). Baseline hypertension and Black race were the primary clinical factors associated with increased acute hypertensive risk within 6 weeks of VEGFR TKI initiation. However, early significant "on-treatment" hypertension was not associated with MACE. CONCLUSIONS: These multicenter, real-world findings indicate that hypertensive and CV morbidities are highly prevalent among patients initiating VEGFR TKI therapies, and baseline hypertension and Black race represent the primary clinical factors associated with VEGFR TKI-related early significant hypertension. However, early on-treatment hypertension was not associated with MACE, and cancer-specific CV risk algorithms may be warranted for patients initiating VEGFR TKIs.


Asunto(s)
Carcinoma de Células Renales , Hipertensión , Neoplasias Renales , Neoplasias de la Tiroides , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/epidemiología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/epidemiología , Presión Sanguínea , Estudios Retrospectivos , Inhibidores de Proteínas Quinasas/efectos adversos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/epidemiología , Hipertensión/inducido químicamente , Hipertensión/epidemiología , Hipertensión/tratamiento farmacológico
17.
Am J Physiol Heart Circ Physiol ; 325(4): H814-H821, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566108

RESUMEN

Osteogenesis imperfecta (OI) is an extracellular matrix disorder characterized by defects in collagen-1 transport or synthesis, resulting in bone abnormalities. Although reduced collagen in OI hearts has been associated with reduced myocardial stiffness and left ventricular remodeling, its impact on cardiomyocyte (CM) function has not been studied. Here, we explore the tissue-level and CM-level properties of a heart from a deceased organ donor with OI type I. Proteomics and histology confirmed strikingly low expression of collagen 1. Trabecular stretch confirmed low stiffness on the tissue level. However, CMs retained normal viscoelastic properties as revealed by nanoindentation. Interestingly, OI CMs were hypercontractile relative to nonfailing controls after 24 h of culture. In response to 48 h of culture on surfaces with physiological (10 kPa) and pathological (50 kPa) stiffness, OI CMs demonstrated a greater reduction in contractility than nonfailing CMs, suggesting that OI CMs may have an impaired stress response. Levels of detyrosinated α-tubulin, known to be responsive to extracellular stiffness, were reduced in OI CMs. Together these data confirm multiple CM-level adaptations to low stiffness that extend our understanding of OI in the heart and how CMs respond to extracellular stiffness.NEW & NOTEWORTHY In a rare donation of a heart from an individual with osteogenesis imperfecta (OI), we explored cardiomyocyte (CM) adaptations to low stiffness. This represents the first assessment of cardiomyocyte mechanics in OI. The data reveal the hypercontractility of OI CMs with rapid rundown when exposed to acute stiffness challenges, extending our understanding of OI. These data demonstrate that the impact of OI on myocardial mechanics includes cardiomyocyte adaptations beyond known direct effects on the extracellular matrix.


Asunto(s)
Osteogénesis Imperfecta , Humanos , Adulto , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Miocitos Cardíacos/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Osteogénesis
18.
19.
Circulation ; 147(25): 1919-1932, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37194598

RESUMEN

BACKGROUND: Right ventricular (RV) contractile dysfunction commonly occurs and worsens outcomes in patients with heart failure with reduced ejection fraction and pulmonary hypertension (HFrEF-PH). However, such dysfunction often goes undetected by standard clinical RV indices, raising concerns that they may not reflect aspects of underlying myocyte dysfunction. We thus sought to characterize RV myocyte contractile depression in HFrEF-PH, identify those components reflected by clinical RV indices, and uncover underlying biophysical mechanisms. METHODS: Resting, calcium-, and load-dependent mechanics were prospectively studied in permeabilized RV cardiomyocytes isolated from explanted hearts from 23 patients with HFrEF-PH undergoing cardiac transplantation and 9 organ donor controls. RESULTS: Unsupervised machine learning using myocyte mechanical data with the highest variance yielded 2 HFrEF-PH subgroups that in turn mapped to patients with decompensated or compensated clinical RV function. This correspondence was driven by reduced calcium-activated isometric tension in decompensated clinical RV function, whereas surprisingly, many other major myocyte contractile measures including peak power and myocyte active stiffness were similarly depressed in both groups. Similar results were obtained when subgroups were first defined by clinical indices, and then myocyte mechanical properties in each group compared. To test the role of thick filament defects, myofibrillar structure was assessed by x-ray diffraction of muscle fibers. This revealed more myosin heads associated with the thick filament backbone in decompensated clinical RV function, but not compensated clinical RV function, as compared with controls. This corresponded to reduced myosin ATP turnover in decompensated clinical RV function myocytes, indicating less myosin in a crossbridge-ready disordered-relaxed (DRX) state. Altering DRX proportion (%DRX) affected peak calcium-activated tension in the patient groups differently, depending on their basal %DRX, highlighting potential roles for precision-guided therapeutics. Last, increasing myocyte preload (sarcomere length) increased %DRX 1.5-fold in controls but only 1.2-fold in both HFrEF-PH groups, revealing a novel mechanism for reduced myocyte active stiffness and by extension Frank-Starling reserve in human heart failure. CONCLUSIONS: Although there are many RV myocyte contractile deficits in HFrEF-PH, commonly used clinical indices only detect reduced isometric calcium-stimulated force, which is related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Humanos , Sarcómeros , Calcio , Depresión , Volumen Sistólico , Miocitos Cardíacos , Función Ventricular Derecha/fisiología
20.
JACC Basic Transl Sci ; 8(3): 340-355, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37034289

RESUMEN

Apolipoprotein M (ApoM) binds sphingosine-1-phosphate (S1P) and is inversely associated with mortality in human heart failure (HF). Here, we show that anthracyclines such as doxorubicin (Dox) reduce circulating ApoM in mice and humans, that ApoM is inversely associated with mortality in patients with anthracycline-induced heart failure, and ApoM heterozygosity in mice increases Dox-induced mortality. In the setting of Dox stress, our studies suggest ApoM can help sustain myocardial autophagic flux in a post-transcriptional manner, attenuate Dox cardiotoxicity, and prevent lysosomal injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA