Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(16): 3972-3980, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38624173

RESUMEN

Complex molten chloride salt mixtures of uranium, magnesium, and sodium are top candidates for promising nuclear energy technologies to produce electricity based on molten salt reactors. From a local structural perspective, LaCl3 is similar to UCl3 and hence a good proxy to study these complex salt mixtures. As fission products, lanthanide salts and their mixtures are also very important in their own right. This article describes from an experimental and theory perspective how very different the structural roles of MgCl2 and NaCl are in mixtures with LaCl3. We find that, whereas MgCl2 becomes an integral part of multivalent ionic networks, NaCl separates them. In a recent article (J. Am. Chem. Soc. 2022, 144, 21751-21762) we have called the disruptive behavior of NaCl "the spacer salt effect". Because of the heterogeneous nature of these salt mixtures, there are multiple structural motifs in the melt, each with its particular free energetics. Our work identifies and quantifies these; it also elucidates the mechanisms through which Cl- ions exchange between Mg2+-rich and La3+-rich environments.

2.
J Am Chem Soc ; 145(47): 25518-25522, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37963184

RESUMEN

High impact recent articles have reported on the existence of a liquid-liquid (L-L) phase transition as a function of both pressure and temperature in ionic liquids (ILs) containing the popular trihexyltetradecylphosphonium cation (P666,14+), sometimes referred to as the "universal liquifier". The work presented here reports on the structural-dynamic pathway from liquid to glass of the most well-studied IL comprising the P666,14+ cation. We present experimental and computational evidence that, on cooling, the path from the room-temperature liquid to the glass state is one of separate structural-dynamic changes. The first stage involves the slowdown of the charge network, while the apolar subcomponent is fully mobile. A second, separate stage entails the slowdown of the apolar domain. Whereas it is possible that these processes may be related to the liquid-liquid and glass transitions, more research is needed to establish this conclusively.

3.
J Phys Chem B ; 127(42): 9155-9164, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37753927

RESUMEN

New and exciting frontiers for the generation of safe and renewable energy have brought attention to molten inorganic salts of fluorides and chlorides. This is because high-temperature molten salts can act both as coolants and liquid fuel in next-generation nuclear reactors. Whereas research from a few decades ago suggests that salts are mostly unreactive to radiation, recent experiments hint at the fact that electrons generated in such extreme environments can react with the melt and form new species including nanoparticles. Our study probes the fate of an excess electron in molten ZnCl2 using first-principles molecular dynamics calculations. We find that on the time scale accessible to our study, an excess electron can be found in one of three states; the lowest-energy state can be characterized as a covalent Zn2Cl5•2- radical ion, the other two states are a solvated Zn•+ species (ZnCl3•2-) and a more delocalized species that still has some ZnCl3•2- character. Since for each of these, the singly occupied molecular orbital (SOMO) where the excess charge resides has a distinct and well-separated energy, the different species can in principle be characterized by their own electronic spectra. The study also sheds light onto what is commonly understood as the spectrum of a transient radical species which can be from the SOMO onto higher energy states or from the melt to pair with the excess electron leaving a hole in the liquid.

4.
J Phys Chem B ; 127(28): 6342-6353, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37432303

RESUMEN

Ionic liquid viscosity is one of the most important properties to consider for practical applications. Yet, the connection between local structure and viscosity remains an open question. This article explores the structural origin of differences in the viscosity and viscoelastic relaxation across several ionic liquids, including cations with alkyl, ether, and thioether tails, of the imidazolium and pyrrolidinium families coupled with the NTf2- anion. In all cases, for the systems studied here, we find that pyrrolidinium-based ions are "harder" than their imidazolium-based counterparts. We make a connection between the chemical concept of hardness vs softness and specific structural and structural dynamic quantities that can be derived from scattering experiments and simulations.

5.
J Am Chem Soc ; 144(47): 21751-21762, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36379028

RESUMEN

Lanthanides are important fission products in molten salt reactors, and understanding their structure and that of their mixtures is relevant to many scientific and technological problems including the recovery and separation of rare earth elements using molten salt electrolysis. The literature on molten salts and specifically on LaCl3 and LaCl3-NaCl mixtures is often fragmented, with different experiments and simulations coinciding in their explanation for certain structural results but contradicting or questioning for others. Given the very practical importance that actinide and lanthanide salts have for energy applications, it is imperative to arrive at a clear unified picture of their local and intermediate-range structure in the neat molten state and when mixed with other salts. This article aims to unequivocally answer a set of specific questions: is it correct to think of long-lived octahedral coordination structures for La3+? What is the nature as a function of temperature of networks and intermediate-range order particularly upon dilution of the trivalent ion salt? Is the so-called scattering first sharp diffraction peak (FSDP) for neat LaCl3 truly indicative of intermediate-range order? If so, why is there a new lower-q peak when mixed with NaCl? Are X-ray scattering and Raman spectroscopy results fully consistent and easily described by simulation results? We will show that answers to these questions require that we abandon the idea of a most prominent coordination state for M3+ ions and instead think of multiple competing coordination states in exchange due to significant thermal energy in the molten state.


Asunto(s)
Elementos de la Serie de los Lantanoides , Sales (Química) , Sales (Química)/química , Cloruro de Sodio , Iones/química , Temperatura
6.
J Phys Chem C Nanomater Interfaces ; 126(32): 13936-13945, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36017361

RESUMEN

We report studies of the vacuum interfacial structure of a series of 1-methyl-3-alkylimidazolium bis(perfluoroalkanesulfonyl)imide ionic liquids (ILs) and predict and explain their Fresnel-normalized X-ray reflectivity. To better interpret the results, we use a theory we recently developed dubbed "the peaks and antipeaks analysis of reflectivity" which splits the overall signal into that of different pair subcomponents. Whereas the overall reflectivity signal is not very informative, the peak and trough intensities for the pair subcomponents provide rich information for analysis. When species containing cationic alkyl or anionic fluoroalkyl tails are present at the interface, a tail layer is found next to a vacuum, and this tail layer can be composed of both alkyl and fluoroalkyl moieties. To maintain the positive-negative alternation of charged groups, alkyl and fluoroalkyl tails must necessarily be nearby and cannot segregate. Charged groups are found in the subsequent layer just below the interface and arranged to achieve lateral charge neutrality. In general, fluctuations at and away from the interface are based on polarity (i.e., heads and tails) and not on charge; when there are no significant alkyl or fluoroalkyl moieties in the IL, atomic density fluctuations away from the interface are small and appear to exist for the purpose of achieving lateral charge balance. For all the systems reported here, the persistence length of density fluctuations does not go beyond ∼7 nm.

7.
Chem Sci ; 12(23): 8026-8035, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34194692

RESUMEN

Enhancing the solar energy storage and power delivery afforded by emerging molten salt-based technologies requires a fundamental understanding of the complex interplay between structure and dynamics of the ions in the high-temperature media. Here we report results from a comprehensive study integrating synchrotron X-ray scattering experiments, ab initio molecular dynamics simulations and rate theory concepts to investigate the behavior of dilute Cr3+ metal ions in a molten KCl-MgCl2 salt. Our analysis of experimental results assisted by a hybrid transition state-Marcus theory model reveals unexpected clustering of chromium species leading to the formation of persistent octahedral Cr-Cr dimers in the high-temperature low Cr3+ concentration melt. Furthermore, our integrated approach shows that dynamical processes in the molten salt system are primarily governed by the charge density of the constituent ions, with Cr3+ exhibiting the slowest short-time dynamics. These findings challenge several assumptions regarding specific ionic interactions and transport in molten salts, where aggregation of dilute species is not statistically expected, particularly at high temperature.

8.
J Phys Chem B ; 125(23): 6264-6271, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34097825

RESUMEN

In a set of recent articles, we have highlighted that friction is highly inhomogeneous in a typical ionic liquid (IL) with charge networks that are stiff and charge-depleted regions that are soft. This has consequences not only for the dynamics of ILs but also for the transport properties of solutes dissolved in them. In this article, we explore whether the family of alkylimidazolium ILs coupled with bis(trifluoromethylsulfonyl)imide (with similar Coulombic interactions but different alkyl tails), when dynamically "equalized" by having a similar shear viscosity, display q-dependent structural relaxation time scales that are the same across the family. Our results show that this is not the case, and in fact, the relaxation of in-network charge alternation appears to be significantly affected by the presence of separate polar and apolar domains. However, we also find that if one was to assign weight factors to the relaxation of the structural motifs, charge alternation always contributes about the same amount (between 62.1 and 66.3%) across systems to the running integral of the stress tensor correlation function from which the shear viscosity is derived. Adjacency correlations between positive and negative moieties also contribute an identical amount if a prepeak is not present (about 38%) and a slightly smaller amount (about 28%) when intermediate range order exists. The prepeak only contributes about 6% to viscoelastic relaxation, highlighting that the dynamics of the smaller scale motifs is the most important.


Asunto(s)
Líquidos Iónicos , Imidas , Simulación de Dinámica Molecular , Viscosidad
9.
J Phys Chem B ; 125(22): 5971-5982, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34037400

RESUMEN

In this work, we resolve a long-standing issue concerning the local structure of molten MgCl2 by employing a multimodal approach, including X-ray scattering and Raman spectroscopy, along with the theoretical modeling of the experimental spectra based on ab initio molecular dynamics (AIMD) simulations utilizing several density functional theory (DFT) methods. We demonstrate the reliability of AIMD simulations in achieving excellent agreement between the experimental and simulated spectra for MgCl2 and 50 mol % MgCl2 + 50 mol % KCl, and ZnCl2, thus allowing structural insights not directly available from experiment alone. A thorough computational analysis using five DFT methods provides a convergent view that octahedrally coordinated magnesium in pure MgCl2 upon melting preferentially coordinates with five chloride anions to form distorted square pyramidal polyhedra that are connected via corners and to a lesser degree via edges. This is contrasted with the results for ZnCl2, which does not change its tetrahedral coordination on melting. Although the five-coordinate MgCl53- complex was not considered in the early literature, together with an increasing tendency to form a tetrahedrally coordinated complex with decreasing the MgCl2 content in the mixture with alkali metal chloride systems, current work reconciles the results of most previous seemingly contradictory experimental studies.

10.
J Phys Chem B ; 125(24): 6359-6372, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34048657

RESUMEN

High-temperature molten salt research is undergoing somewhat of a renaissance these days due to the apparent advantage of these systems in areas related to clean and sustainable energy harvesting and transfer. In many ways, this is a mature field with decades if not already a century of outstanding work devoted to it. Yet, much of this work was done with pioneering experimental and computational setups that lack the current day capabilities of synchrotrons and high-performance-computing systems resulting in deeply entrenched results in the literature that when carefully inspected may require revision. Yet, in other cases, access to isotopically substituted ions make those pioneering studies very unique and prohibitively expensive to carry out nowadays. There are many review articles on molten salts, some of them cited in this perspective, that are simply outstanding and we dare not try to outdo those. Instead, having worked for almost a couple of decades already on their low-temperature relatives, the ionic liquids, this is the perspective article that some of the authors would have wanted to read when embarking on their research journey on high-temperature molten salts. We hope that this will serve as a simple guide to those expanding from research on ionic liquids to molten salts and vice versa, particularly, when looking into their bulk structural features. The article does not aim at being comprehensive but instead focuses on selected topics such as short- and intermediate-range order, the constraints on force field requirements, and other details that make the high- and low-temperature ionic melts in some ways similar but in others diametrically opposite.


Asunto(s)
Líquidos Iónicos , Frío , Iones , Sales (Química) , Temperatura
12.
J Chem Phys ; 153(21): 214502, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33291915

RESUMEN

Results from extensive molecular dynamics simulations of molten LiCl, NaCl, KCl, and RbCl over a wide range of temperatures are reported. Comparison is made between the "Polarizable Ion Model" (PIM) and the non-polarizable "Rigid Ion Model" (RIM). Densities, self-diffusivities, shear viscosities, ionic conductivities, and thermal conductivities are computed and compared with experimental data. In addition, radial distribution functions are computed from ab initio molecular dynamics simulations and compared with the two sets of classical simulations as well as experimental data. The two classical models perform reasonably well at capturing structural and dynamic properties of the four molten alkali chlorides, both qualitatively and often quantitatively. With the singular exception of liquid density, for which the PIM is more accurate than the RIM, there are few clear trends to suggest that one model is more accurate than the other for the four alkali halide systems studied here.

13.
Phys Chem Chem Phys ; 22(40): 22900-22917, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32845262

RESUMEN

Molten salts are of great interest as alternative solvents, electrolytes, and heat transfer fluids in many emerging technologies. The macroscopic properties of molten salts are ultimately controlled by their structure and ion dynamics at the microscopic level and it is therefore vital to develop an understanding of these at the atomistic scale. Herein, we present high-energy X-ray scattering experiments combined with classical and ab initio molecular dynamics simulations to elucidate structural and dynamical correlations across the family of alkali-chlorides. Computed structure functions and transport properties are in reasonably good agreement with experiments providing confidence in our analysis of microscopic properties based on simulations. For these systems, we also survey different rate theory models of anion exchange dynamics in order to gain a more sophisticated understanding of the short-time correlations that are likely to influence transport properties such as conductivity. The anion exchange process occurs on the picoseconds time scale at 1100 K and the rate increases in the order KCl < NaCl < LiCl, which is in stark contrast to the ion pair dissociation trend in aqueous solutions. Consistent with the trend we observe for conductivity, the cationic size/mass, as well as other factors specific to each type of rate theory, appear to play important roles in the anion exchange rate trend.

14.
J Phys Chem A ; 124(38): 7832-7842, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32841019

RESUMEN

There is a long history of models that to different extents reproduce structural and dynamical properties of high-temperature molten salts. Whereas rigid ion models can work fairly well for some of the monovalent salts, polarizability is fundamentally important when small divalent or multivalent cations are combined with significantly polarizable anions such as Cl- to form networked liquids that display a first sharp diffraction peak. There are excellent polarizable ion models (PIMs) for these systems, but there has been little success with the less expensive Core-Shell type models, which are often described as unwieldy or difficult to fit. In this article, we present the Sharma-Emerson-Margulis (SEM)-Drude model for MgCl2/KCl mixtures that with the same ingredients used in the latest and most accurate PIM models overcome the aforementioned obstacles at significantly less computational cost; structural and dynamical properties are for all practical purposes very similar to what we obtain from the PIM but typical simulations can be more than 30 times faster. This has allowed us not only to expand our recent studies on the temperature and composition dependence of intermediate range order in MgCl2/KCl mixtures but also to access transport properties that were simply too costly to properly sample in our recently published studies.

15.
J Phys Chem B ; 124(14): 2892-2899, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32148043

RESUMEN

This article addresses the non-Debye-Waller temperature behavior in the intermediate range order for molten MgCl2 and its mixtures with KCl from a theory, Molecular Dynamics, and experimental X-ray scattering perspective and puts these findings in the context of discussions and controversies extending at least four decades. We find that these liquids are defined by two structural motifs. The first motif is associated with chains of positive-negative charge alternation; the second motif, which results in a prepeak in the structure function S(q), is associated with the interaction of Mg2+ and Cl- ions that do not belong to the same charge alternation chain or aggregate. Our complementary X-ray scattering and computational results provide a quantitative explanation for the increase in intensity of the prepeak with temperature as opposed to the behavior of other peaks following normal Debye-Waller behavior. Temperature has opposite effects on the prevalence of each of the two structural motifs, and the enhancement of one pattern appears to be at the detriment of the other. Whereas the intensity in S(q) associated with the charge alternation motif is diminished at higher temperature, the opposite is true for the prepeak associated with intermediate range order due to the second structural motif.

16.
J Phys Chem Lett ; 11(6): 2062-2066, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32079397

RESUMEN

Prototypical ionic liquids (ILs) are characterized by three structural motifs associated with (1) vicinal interactions, (2) the formation of positive-negative charge-alternating chains or networks, and (3) the alternation of these networks with apolar domains. In recent articles, we highlighted that the friction and mobility in these systems are nowhere close to being spatially homogeneous. This results in what one could call mechanical heterogeneity, where charge networks are intrinsically stiff and charge-depleted regions are softer, flexible, and mobile. This Letter attempts to provide a clear and visual connection between friction-associated with the dynamics of the structural motifs (in particular, the charge network)-and recent theoretical work by Yamaguchi linking the time-dependent viscosity of ILs to the decay of the charge alternation peak in the dynamic structure function. We propose that charge blurring associated with the loss of memory of where positive and negative charges are within networks is the key mechanism associated with viscosity in ILs. An IL will have low viscosity if a characteristic charge-blurring decorrelation time is low. With this in mind, engineering new low-viscosity ILs is reduced to understanding how to minimize this quantity.

17.
J Phys Chem Lett ; 10(24): 7603-7610, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31738562

RESUMEN

The development of technologies for nuclear reactors based on molten salts has seen a big resurgence. The success of thermodynamic models for these hinges in part on our ability to predict at the atomistic level the behavior of pure salts and their mixtures under a range of conditions. In this letter, we present high-energy X-ray scattering experiments and molecular dynamics simulations that describe the molten structure of mixtures of MgCl2 and KCl. As one would expect, KCl is a prototypical salt in which structure is governed by simple charge alternation. In contrast, MgCl2 and its mixtures with KCl display more complex correlations including intermediate-range order and the formation of Cl--decorated Mg2+ chains. A thorough computational analysis suggests that intermediate-range order beyond charge alternation may be traced to correlations between these chains. An analysis of the coordination structure for Mg2+ ions paints a more complex picture than previously understood, with multiple accessible states of distinct geometries.

18.
J Chem Phys ; 151(7): 074504, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438705

RESUMEN

Ionic liquids (ILs) with relatively low viscosities and broad windows of electrochemical stability are often constructed by pairing asymmetric cations with bisfluorosulfonylimide (FSI-) or bistriflimide (NTf2 -) anions. In this work, we systematically studied the structures of ILs with these anions and related perfluorobis-sulfonylimide anions with asymmetry and/or longer chains: (fluorosulfonyl)(trifluoromethylsulfonyl)imide (BSI0,1 -), bis(pentafluoroethylsulfonyl)imide (BETI-), and (trifluoromethylsulfonyl) (nonafluorobutylsulfonyl)imide (BSI1,4 -) using high energy X-ray scattering and molecular dynamics simulation methods. 1-alkyl-3-methylimidazolium cations with shorter (ethyl, Im2,1 +) and longer (octyl, Im1,8 +) hydrocarbon chains were selected to examine how the sizes of nonpolar hydrocarbon and fluorous chains affect IL structures and properties. In comparison with these, we also computationally explored the structure of ionic liquids with anions having longer fluorinated tails.

19.
J Chem Phys ; 148(19): 193831, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30307188

RESUMEN

In a set of recent publications [C. J. Margulis et al., J. Am. Chem. Soc. 133, 20186 (2011); C. H. Xu et al., J. Am. Chem. Soc. 135, 17528 (2013); C. H. Xu and C. J. Margulis, J. Phys. Chem. B 119, 532 (2015); and K. B. Dhungana et al., J. Phys. Chem. B 121, 8809 (2017)], we explored for selected ionic liquids the early stages of excess charge localization and reactivity relevant both to electrochemical and radiation chemistry processes. In particular, Xu and Margulis [J. Phys. Chem. B 119, 532 (2015)] explored the dynamics of an excess electron in 1-methyl-1-butyl-pyrrolidinium dicyanamide. When electrons are produced from an ionic liquid, the more elusive hole species are also generated. Depending on the nature of cations and anions and the relative alignment of their electronic states in the condensed phase, the very early hole species can nominally be neutral radicals-if the electron is generated from anions-or doubly charged radical cations if their origin is from cations. However, in reality early excess charge localization is more complex and often involves more than one ion. The dynamics and the transient spectroscopy of the hole are the main objects of this study. We find that in the case of 1-methyl-1-butyl-pyrrolidinium dicyanamide, it is the anions that can most easily lose an electron becoming radical species, and that hole localization is mostly on anionic nitrogen. We also find that the driving force for localization of an excess hole appears to be smaller than that for an excess electron in 1-methyl-1-butyl-pyrrolidinium dicyanamide. The early transient hole species can absorb light in the visible, ultraviolet, and near infrared regions, and we are able to identify the type of states being connected by these transitions.

20.
J Chem Phys ; 149(14): 144503, 2018 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-30316258

RESUMEN

Structural heterogeneity in Ionic Liquids (ILs) is to a large extent defined by nanoscale apolar pockets that act as spacers between strings of positive and negative charges that alternate. In contrast to this, recent work from our group and that of others appear to indicate that dynamic, energetic, and mechanical heterogeneities are governed by the charged part of the liquid. In this article, we study the dynamics of methane, a small apolar solute, in the family of ILs 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ( Im 1 , n + /NTf2 -), with n = 2, 4, 8 at temperatures that make the viscosity for each liquid similar and around 8 cP. We do this in an attempt to equalize the effect of the solvent on the dynamics of the solute. In all cases, we find that solute proximity to charge-enhanced regions coincides with translationally caged regimes (high local friction) whereas the opposite is true in charge-depleted regions. In a way, these ILs behave like a liquid within a liquid where the charge network is the high friction component.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...