Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Plant Cell Environ ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679939

RESUMEN

Plant-parasitic nematodes, specifically cyst nematodes (CNs) and root-knot nematodes (RKNs), pose significant threats to global agriculture, leading to substantial crop losses. Both CNs and RKNs induce permanent feeding sites in the root of their host plants, which then serve as their only source of nutrients throughout their lifecycle. Plants deploy reactive oxygen species (ROS) as a primary defense mechanism against nematode invasion. Notably, both CNs and RKNs have evolved sophisticated strategies to manipulate the host's redox environment to their advantage, with each employing distinct tactics to combat ROS. In this review, we have focused on the role of ROS and its scavenging network in interactions between host plants and CNs and RKNs. Overall, this review emphasizes the complex interplay between plant defense mechanism, redox signalling and nematode survival tactics, suggesting potential avenues for developing innovative nematode management strategies in agriculture.

2.
Plant Cell ; 36(3): 559-584, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-37971938

RESUMEN

Cellular condensates are usually ribonucleoprotein assemblies with liquid- or solid-like properties. Because these subcellular structures lack a delineating membrane, determining their compositions is difficult. Here we describe a proximity-biotinylation approach for capturing the RNAs of the condensates known as processing bodies (PBs) in Arabidopsis (Arabidopsis thaliana). By combining this approach with RNA detection, in silico, and high-resolution imaging approaches, we studied PBs under normal conditions and heat stress. PBs showed a much more dynamic RNA composition than the total transcriptome. RNAs involved in cell wall development and regeneration, plant hormonal signaling, secondary metabolism/defense, and RNA metabolism were enriched in PBs. RNA-binding proteins and the liquidity of PBs modulated RNA recruitment, while RNAs were frequently recruited together with their encoded proteins. In PBs, RNAs follow distinct fates: in small liquid-like PBs, RNAs get degraded while in more solid-like larger ones, they are stored. PB properties can be regulated by the actin-polymerizing SCAR (suppressor of the cyclic AMP)-WAVE (WASP family verprolin homologous) complex. SCAR/WAVE modulates the shuttling of RNAs between PBs and the translational machinery, thereby adjusting ethylene signaling. In summary, we provide an approach to identify RNAs in condensates that allowed us to reveal a mechanism for regulating RNA fate.


Asunto(s)
Arabidopsis , ARN , Cuerpos de Procesamiento , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Respuesta al Choque Térmico , Arabidopsis/genética , Arabidopsis/metabolismo
3.
Methods Mol Biol ; 2494: 313-324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35467217

RESUMEN

Nematodes are diverse multicellular organisms that are most abundantly found in the soil. Most nematodes are free-living and feed on a range of organisms. Based on their feeding habits, soil nematodes can be classified into four groups: bacterial, omnivorous, fungal, and plant-feeding. Plant-parasitic nematodes (PPNs) are a serious threat to global food security, causing substantial losses to the agricultural sector. Root-knot and cyst nematodes are the most important of PPNs, significantly limiting the yield of commercial crops such as sugar beet, mustard, and cauliflower. The life cycle of these nematodes consists of four molting stages (J1-J4) that precede adulthood. Nonetheless, only second-stage juveniles (J2), which hatch from eggs, are infective worms that can parasitize the host's roots. The freshly hatched juveniles (J2) of beet cyst nematode, Heterodera schachtii, establish a permanent feeding site inside the roots of the host plant. A cocktail of proteinaceous secretions is injected into a selected cell which later develops into a syncytium via local cell wall dissolution of several hundred neighboring cells. The formation of syncytium is accompanied by massive transcriptional, metabolic, and proteomic changes inside the host tissues. It creates a metabolic sink in which solutes are translocated to feed the nematodes throughout their life cycle. Deciphering the molecular signaling cascades during syncytium establishment is thus essential in studying the plant-nematode interactions and ensuring sustainability in agricultural practices. However, isolating RNA, protein, and metabolites from syncytial cells remains challenging. Extensive use of laser capture microdissection (LCM) in animal and human tissues has shown this approach to be a powerful technique for isolating a single cell from complex tissues. Here, we describe a simplified protocol for Arabidopsis-Heterodera schachtii infection assays, which is routinely applied in several plant-nematode laboratories. Next, we provide a detailed protocol for isolating high-quality RNA from syncytial cells induced by Heterodera schachtii in the roots of Arabidopsis thaliana plants.


Asunto(s)
Arabidopsis , Beta vulgaris , Quistes , Tylenchoidea , Animales , Arabidopsis/metabolismo , Beta vulgaris/genética , Captura por Microdisección con Láser , Estadios del Ciclo de Vida , Proteómica , ARN/metabolismo , Suelo
4.
Nat Commun ; 13(1): 1489, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304458

RESUMEN

Suberin is a fundamental plant biopolymer, found in protective tissues, such as seed coats, exodermis and endodermis of roots. Suberin is deposited in most suberizing cells in the form of lamellae just outside of the plasma membrane, below the primary cell wall. How monomeric suberin precursors, thought to be synthesized at the endoplasmic reticulum, are transported outside of the cell, for polymerization into suberin lamellae has remained obscure. Using electron-microscopy, we observed large numbers of extracellular vesiculo-tubular structures (EVs) to accumulate specifically in suberizing cells, in both chemically and cryo-fixed samples. EV presence correlates perfectly with root suberization and we could block suberin deposition and vesicle accumulation by affecting early, as well as late steps in the secretory pathway. Whereas many previous reports have described EVs in the context of biotic interactions, our results suggest a developmental role for extracellular vesicles in the formation of a major cell wall polymer.


Asunto(s)
Células Vegetales , Raíces de Plantas , Membrana Celular , Pared Celular/metabolismo , Lípidos , Raíces de Plantas/metabolismo
5.
Elife ; 112022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35029147

RESUMEN

Efficient uptake of nutrients in both animal and plant cells requires tissue-spanning diffusion barriers separating inner tissues from the outer lumen/soil. However, we poorly understand how such contiguous three-dimensional superstructures are formed in plants. Here, we show that correct establishment of the plant Casparian Strip (CS) network relies on local neighbor communication. We show that positioning of Casparian Strip membrane domains (CSDs) is tightly coordinated between neighbors in wild-type and that restriction of domain formation involves the putative extracellular protease LOTR1. Impaired domain restriction in lotr1 leads to fully functional CSDs at ectopic positions, forming 'half strips'. LOTR1 action in the endodermis requires its expression in the stele. LOTR1 endodermal expression cannot complement, while cortex expression causes a dominant-negative phenotype. Our findings establish LOTR1 as a crucial player in CSD positioning acting in a directional, non-cell-autonomous manner to restrict and coordinate CS positioning.


Asunto(s)
Proteínas de Arabidopsis , Pared Celular , Lignina , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Pared Celular/fisiología , Lignina/química , Lignina/genética , Lignina/fisiología , Regiones Promotoras Genéticas/genética
6.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917959

RESUMEN

Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL-RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL-RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , ADN Helicasas/metabolismo , Organogénesis de las Plantas/genética , Desarrollo de la Planta/genética , Raíces de Plantas/fisiología , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal
7.
Bio Protoc ; 11(3): e3904, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33732791

RESUMEN

Histological stains are useful tools for characterizing cell shape, arrangement and the material they are made from. Stains can be used individually or simultaneously to mark different cell structures or polymers within the same cells, and to visualize them in different colors. Histological stains can be combined with genetically-encoded fluorescent proteins, which are useful for understanding of plant development. To visualize suberin lamellae by fluorescent microscopy, we improved a histological staining procedure with the dyes Fluorol Yellow 088 and aniline blue. In the complex plant organs such as roots, suberin lamellae are deposited deep within the root on the endodermal cell wall. Our procedure yields reliable and detailed images that can be used to determine the suberin pattern in root cells. The main advantage of this protocol is its efficiency, the detailed visualization of suberin localization it generates in the root, and the possibility of returning to the confocal images to analyze and re-evaluate data if necessary.

8.
Nat Commun ; 11(1): 4285, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855390

RESUMEN

Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citocininas/metabolismo , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/química , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brefeldino A/farmacología , Citocininas/química , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Meristema/citología , Meristema/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Receptores de Superficie Celular/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/efectos de los fármacos
9.
EMBO J ; 39(9): e103894, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32187732

RESUMEN

Production of reactive oxygen species (ROS) by NADPH oxidases (NOXs) impacts many processes in animals and plants, and many plant receptor pathways involve rapid, NOX-dependent increases of ROS. Yet, their general reactivity has made it challenging to pinpoint the precise role and immediate molecular action of ROS. A well-understood ROS action in plants is to provide the co-substrate for lignin peroxidases in the cell wall. Lignin can be deposited with exquisite spatial control, but the underlying mechanisms have remained elusive. Here, we establish a kinase signaling relay that exerts direct, spatial control over ROS production and lignification within the cell wall. We show that polar localization of a single kinase component is crucial for pathway function. Our data indicate that an intersection of more broadly localized components allows for micrometer-scale precision of lignification and that this system is triggered through initiation of ROS production as a critical peroxidase co-substrate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lignina/metabolismo , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Peroxidasas/metabolismo , Raíces de Plantas/metabolismo
10.
Cell ; 180(3): 440-453.e18, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32032516

RESUMEN

Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.


Asunto(s)
Arabidopsis/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/efectos de la radiación , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Terapia por Láser/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/efectos de la radiación , Microscopía Confocal , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de la radiación , Proteínas Quinasas/metabolismo , Proteínas Quinasas/efectos de la radiación , Receptores de Reconocimiento de Patrones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Imagen de Lapso de Tiempo
11.
Plant J ; 100(2): 221-236, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31322300

RESUMEN

Plant-parasitic nematodes (PPNs) cause tremendous yield losses worldwide in almost all economically important crops. The agriculturally most important PPNs belong to a small group of root-infecting sedentary endoparasites that includes cyst and root-knot nematodes. Both cyst and root-knot nematodes induce specialized long-term feeding structures in root vasculature from which they obtain their nutrients. A specialized cell layer in roots called the endodermis, which has cell walls reinforced with suberin deposits and a lignin-based Casparian strip (CS), protects the vascular cylinder against abiotic and biotic threats. To date, the role of the endodermis, and especially of suberin and the CS, during plant-nematode interactions was largely unknown. Here, we analyzed the role of suberin and CS during interaction between Arabidopsis plants and two sedentary root-parasitic nematode species, the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. We found that nematode infection damages the endodermis leading to the activation of suberin biosynthesis genes at nematode infection sites. Although feeding sites induced by both cyst and root-knot nematodes are surrounded by endodermis during early stages of infection, the endodermis is degraded during later stages of feeding site development, indicating periderm formation or ectopic suberization of adjacent tissue. Chemical suberin analysis showed a characteristic suberin composition resembling peridermal suberin in nematode-infected tissue. Notably, infection assays using Arabidopsis lines with CS defects and impaired compensatory suberization, revealed that the CS and suberization impact nematode infectivity and feeding site size. Taken together, our work establishes the role of the endodermal barrier system in defence against a soil-borne pathogen.


Asunto(s)
Enfermedades de las Plantas/parasitología , Raíces de Plantas/citología , Raíces de Plantas/parasitología , Tylenchoidea/patogenicidad , Animales , Arabidopsis/citología , Arabidopsis/metabolismo , Arabidopsis/parasitología , Pared Celular/metabolismo , Pared Celular/parasitología , Interacciones Huésped-Parásitos , Lípidos/fisiología , Raíces de Plantas/metabolismo
12.
Cell ; 177(4): 957-969.e13, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051107

RESUMEN

Patterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing.


Asunto(s)
Raíces de Plantas/metabolismo , Células Madre/metabolismo , Cicatrización de Heridas/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/fisiología , División Celular , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
13.
EMBO J ; 38(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31061171

RESUMEN

Plants are exposed to cellular damage by mechanical stresses, herbivore feeding, or invading microbes. Primary wound responses are communicated to neighboring and distal tissues by mobile signals. In leaves, crushing of large cell populations activates a long-distance signal, causing jasmonate production in distal organs. This is mediated by a cation channel-mediated depolarization wave and is associated with cytosolic Ca2+ transient currents. Here, we report that much more restricted, single-cell wounding in roots by laser ablation elicits non-systemic, regional surface potential changes, calcium waves, and reactive oxygen species (ROS) production. Surprisingly, laser ablation does not induce a robust jasmonate response, but regionally activates ethylene production and ethylene-response markers. This ethylene activation depends on calcium channel activities distinct from those in leaves, as well as a specific set of NADPH oxidases. Intriguingly, nematode attack elicits very similar responses, including membrane depolarization and regional upregulation of ethylene markers. Moreover, ethylene signaling antagonizes nematode feeding, delaying initial syncytial-phase establishment. Regional signals caused by single-cell wounding thus appear to constitute a relevant root immune response against small invaders.


Asunto(s)
Etilenos/biosíntesis , Nematodos/metabolismo , Raíces de Plantas/metabolismo , Estrés Mecánico , Estrés Fisiológico/fisiología , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Señalización del Calcio/fisiología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Oxilipinas/metabolismo , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
14.
Nat Plants ; 5(2): 160-166, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30737509

RESUMEN

Multicellular development requires coordinated cell polarization relative to body axes, and translation to oriented cell division1-3. In plants, it is unknown how cell polarities are connected to organismal axes and translated to division. Here, we identify Arabidopsis SOSEKI proteins that integrate apical-basal and radial organismal axes to localize to polar cell edges. Localization does not depend on tissue context, requires cell wall integrity and is defined by a transferrable, protein-specific motif. A Domain of Unknown Function in SOSEKI proteins resembles the DIX oligomerization domain in the animal Dishevelled polarity regulator. The DIX-like domain self-interacts and is required for edge localization and for influencing division orientation, together with a second domain that defines the polar membrane domain. Our work shows that SOSEKI proteins locally interpret global polarity cues and can influence cell division orientation. Furthermore, this work reveals that, despite fundamental differences, cell polarity mechanisms in plants and animals converge on a similar protein domain.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Células Vegetales/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas Bacterianas/genética , Polaridad Celular , Regulación de la Expresión Génica de las Plantas , Proteínas Luminiscentes/genética , Familia de Multigenes , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Dominios Proteicos , Semillas/genética
15.
Nat Plants ; 4(8): 586-595, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30061749

RESUMEN

Changes in gene regulation during differentiation are governed by networks of transcription factors. The Arabidopsis root endodermis is a tractable model to address how transcription factors contribute to differentiation. We used a bottom-up approach to understand the extent to which transcription factors that are required for endodermis differentiation can confer endodermis identity to a non-native cell type. Our results show that the transcription factors SHORTROOT and MYB36 alone have limited ability to induce ectopic endodermal features in the absence of additional cues. The stele-derived signalling peptide CIF2 stabilizes SHORTROOT-induced endodermis identity acquisition. The outcome is a partially impermeable barrier deposited in the subepidermal cell layer, which has a transcriptional signature similar to the endodermis. These results demonstrate that other root cell types can be forced to differentiate into the endodermis and highlight a previously unappreciated role for receptor kinase signalling in maintaining endodermis identity.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Diferenciación Celular , Pared Celular/genética , Pared Celular/metabolismo , Pared Celular/ultraestructura , Redes Reguladoras de Genes , Células Vegetales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
16.
Plant J ; 93(2): 399-412, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29171896

RESUMEN

Higher plant function is contingent upon the complex three-dimensional (3D) architecture of plant tissues, yet severe light scattering renders deep, 3D tissue imaging very problematic. Although efforts to 'clear' tissues have been ongoing for over a century, many innovations have been made in recent years. Among them, a protocol called ClearSee efficiently clears tissues and diminishes chlorophyll autofluorescence while maintaining fluorescent proteins - thereby allowing analysis of gene expression and protein localisation in cleared samples. To further increase the usefulness of this protocol, we have developed a ClearSee-based toolbox in which a number of classical histological stains for lignin, suberin and other cell wall components can be used in conjunction with fluorescent reporter lines. We found that a number of classical dyes are highly soluble in ClearSee solution, allowing the old staining protocols to be enormously simplified; these additionally have been unsuitable for co-visualisation with fluorescent markers due to harsh fixation and clearing. Consecutive staining with several dyes allows 3D co-visualisation of distinct cell wall modifications with fluorescent proteins - used as transcriptional reporters or protein localisation tools - deep within tissues. Moreover, the protocol is easily applied on hand sections of different organs. In combination with confocal microscopy, this improves image quality while decreasing the time and cost of embedding/sectioning. It thus provides a low-cost, efficient method for studying thick plant tissues which are usually cumbersome to visualise. Our ClearSee-adapted protocols significantly improve and speed up anatomical and developmental investigations in numerous plant species, and we hope they will contribute to new discoveries in many areas of plant research.


Asunto(s)
Arabidopsis/citología , Microscopía Confocal/métodos , Urea , Xilitol , Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Clorofila/metabolismo , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/química , Indicadores y Reactivos/química , Lignina/metabolismo , Lípidos de la Membrana/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Coloración y Etiquetado
17.
Genes Dev ; 30(4): 471-83, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26883363

RESUMEN

To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.


Asunto(s)
Arabidopsis/fisiología , División Celular , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Técnicas de Ablación , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Comunicación Celular , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/citología , Transporte de Proteínas , Transducción de Señal
18.
Nat Commun ; 6: 8821, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26578065

RESUMEN

Multiple plant developmental processes, such as lateral root development, depend on auxin distribution patterns that are in part generated by the PIN-formed family of auxin-efflux transporters. Here we propose that AUXIN RESPONSE FACTOR7 (ARF7) and the ARF7-regulated FOUR LIPS/MYB124 (FLP) transcription factors jointly form a coherent feed-forward motif that mediates the auxin-responsive PIN3 transcription in planta to steer the early steps of lateral root formation. This regulatory mechanism might endow the PIN3 circuitry with a temporal 'memory' of auxin stimuli, potentially maintaining and enhancing the robustness of the auxin flux directionality during lateral root development. The cooperative action between canonical auxin signalling and other transcription factors might constitute a general mechanism by which transcriptional auxin-sensitivity can be regulated at a tissue-specific level.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Retroalimentación Fisiológica , Glucuronidasa/metabolismo , Organismos Modificados Genéticamente , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
19.
Nat Commun ; 6: 8717, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26541513

RESUMEN

Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development.


Asunto(s)
Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Factores de Transcripción/genética , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes , Proteínas de Transporte de Membrana/metabolismo , Microscopía Confocal , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Elementos de Respuesta , Transducción de Señal , Factores de Transcripción/metabolismo
20.
Bio Protoc ; 5(8)2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27331080

RESUMEN

Plants maintain capacity to form new organs such as leaves, flowers, lateral shoots and roots throughout their postembryonic lifetime. Lateral roots (LRs) originate from a few pericycle cells that acquire attributes of founder cells (FCs), undergo series of anticlinal divisions, and give rise to a few short initial cells. After initiation, coordinated cell division and differentiation occur, giving rise to lateral root primordia (LRP). Primordia continue to grow, emerge through the cortex and epidermal layers of the primary root, and finally a new apical meristem is established taking over the responsibility for growth of mature lateral roots [for detailed description of the individual stages of lateral root organogenesis see Malamy and Benfey (1997)]. To examine this highly dynamic developmental process and to investigate a role of various hormonal, genetic and environmental factors in the regulation of lateral root organogenesis, the real time imaging based analyses represent extremely powerful tools (Laskowski et al., 2008; De Smet et al., 2012; Marhavý et al., 2013 and 2014). Herein, we describe a protocol for real time lateral root primordia (LRP) analysis, which enables the monitoring of an onset of the specific gene expression and subcellular protein localization during primordia organogenesis, as well as the evaluation of the impact of genetic and environmental perturbations on LRP organogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...