Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(4): 109519, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38595795

RESUMEN

Efficient solution of physical boundary value problems (BVPs) remains a challenging task demanded in many applications. Conventional numerical methods require time-consuming domain discretization and solving techniques that have limited throughput capabilities. Here, we present an efficient data-driven DNN approach to non-iterative solving arbitrary 2D linear elastic BVPs. Our results show that a U-Net-based surrogate model trained on a representative set of reference FDM solutions can accurately emulate linear elastic material behavior with manifold applications in deformable modeling and simulation.

2.
Sci Rep ; 13(1): 9116, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277366

RESUMEN

Efficient solution of partial differential equations (PDEs) of physical laws is of interest for manifold applications in computer science and image analysis. However, conventional domain discretization techniques for numerical solving PDEs such as Finite Difference (FDM), Finite Element (FEM) methods are unsuitable for real-time applications and are also quite laborious in adaptation to new applications, especially for non-experts in numerical mathematics and computational modeling. More recently, alternative approaches to solving PDEs using the so-called Physically Informed Neural Networks (PINNs) received increasing attention because of their straightforward application to new data and potentially more efficient performance. In this work, we present a novel data-driven approach to solve 2D Laplace PDE with arbitrary boundary conditions using deep learning models trained on a large set of reference FDM solutions. Our experimental results show that both forward and inverse 2D Laplace problems can efficiently be solved using the proposed PINN approach with nearly real-time performance and average accuracy of 94% for different types of boundary value problems compared to FDM. In summary, our deep learning based PINN PDE solver provides an efficient tool with various applications in image analysis and computational simulation of image-based physical boundary value problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...