Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Viruses ; 14(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36146888

RESUMEN

The authors hereby request the inclusion of two authors (Olivia Teixeira and Maria Cristina Nonato) in the recently published article in Viruses entitled "Nucleocapsid (N) gene mutations of SARS-CoV-2 can affect real-time RT-PCR diagnostic and impact false-negative results" [...].

2.
Nat Microbiol ; 7(9): 1490-1500, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982313

RESUMEN

The high numbers of COVID-19 cases and deaths in Brazil have made Latin America an epicentre of the pandemic. SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, but important gaps remain in our understanding of virus transmission dynamics at a national scale. We use 17,135 near-complete genomes sampled from 27 Brazilian states and bordering country Paraguay. From March to November 2020, we detected co-circulation of multiple viral lineages that were linked to multiple importations (predominantly from Europe). After November 2020, we detected large, local transmission clusters within the country. In the absence of effective restriction measures, the epidemic progressed, and in January 2021 there was emergence and onward spread, both within and abroad, of variants of concern and variants under monitoring, including Gamma (P.1) and Zeta (P.2). We also characterized a genomic overview of the epidemic in Paraguay and detected evidence of importation of SARS-CoV-2 ancestor lineages and variants of concern from Brazil. Our findings show that genomic surveillance in Brazil enabled assessment of the real-time spread of emerging SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil , Genómica , Humanos
3.
medRxiv ; 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35378755

RESUMEN

Brazil has experienced some of the highest numbers of COVID-19 cases and deaths globally and from May 2021 made Latin America a pandemic epicenter. Although SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, important gaps remain in our understanding of virus transmission dynamics at the national scale. Here, we describe the genomic epidemiology of SARS-CoV-2 using near-full genomes sampled from 27 Brazilian states and a bordering country - Paraguay. We show that the early stage of the pandemic in Brazil was characterised by the co-circulation of multiple viral lineages, linked to multiple importations predominantly from Europe, and subsequently characterized by large local transmission clusters. As the epidemic progressed under an absence of effective restriction measures, there was a local emergence and onward international spread of Variants of Concern (VOC) and Variants Under Monitoring (VUM), including Gamma (P.1) and Zeta (P.2). In addition, we provide a preliminary genomic overview of the epidemic in Paraguay, showing evidence of importation from Brazil. These data reinforce the usefulness and need for the implementation of widespread genomic surveillance in South America as a toolkit for pandemic monitoring that provides a means to follow the real-time spread of emerging SARS-CoV-2 variants with possible implications for public health and immunization strategies.

4.
J Med Virol ; 94(7): 3394-3398, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35229308

RESUMEN

Delta VOC is highly diverse with more than 120 sublineages already described as of November 30, 2021. In this study, through active monitoring of circulating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants in the state of São Paulo, southeast Brazil, we identified two emerging sublineages from the ancestral AY.43 strain which were classified as AY.43.1 and AY.43.2. These sublineages were defined by the following characteristic nonsynonymous mutations ORF1ab:A4133V and ORF3a:T14I for the AY.43.1 and ORF1ab:G1155C for the AY.43.2 and our analysis reveals that they might have a likely-Brazilian origin. Much is still unknown regarding their dissemination in the state of São Paulo and Brazil as well as their potential impact on the ongoing vaccination process. However, the results obtained in this study reinforce the importance of genomic surveillance activity for timely identification of emerging SARS-CoV-2 variants which can impact the ongoing SARS-CoV-2 vaccination and public health policies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Vacunas contra la COVID-19 , Genómica , Humanos , SARS-CoV-2/genética
5.
Virus Res ; 308: 198643, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34848213

RESUMEN

The SARS-CoV-2 alpha VOC (also known as lineage B.1.1.7) initially described in the autumn, 2020 in UK, rapidly became the dominant lineage across much of Europe. Despite multiple studies reporting molecular evidence suggestive of its circulation in Brazil, much is still unknown about its genomic diversity in the state of São Paulo, the main Brazilian economic and transportation hub. To get more insight regarding its transmission dynamics into the State we performed phylogenetic analysis on all alpha VOC strains obtained between February and August 2021 from the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants. The performed phylogenetic analysis showed that most of the alpha VOC genomes were interspersed with viral strains sampled from different Brazilian states and other countries suggesting that multiple independent Alpha VOC introductions from Brazil and overseas have occurred in the São Paulo State over time. Nevertheless, large monophyletic clusters were also observed especially from the Central-West part of the São Paulo State (the city of Bauru) and the metropolitan region of the São Paulo city. Our results highlight the Alpha VOC molecular epidemiology in the São Paulo state and reinforce the need for continued genomic surveillance strategies for the real-time monitoring of potential emerging SARS-CoV-2 variants during the ever-growing vaccination process.


Asunto(s)
COVID-19 , Filogenia , SARS-CoV-2/genética , Brasil/epidemiología , COVID-19/epidemiología , COVID-19/virología , Genómica , Humanos , Organización Mundial de la Salud
7.
Slavov, Svetoslav Nanev; Fonseca, Vagner; Wilkinson, Eduan; Tegally, Houriiyah; Patané, José Salvatore Leister; Viala, Vincent Louis; San, Emmanuel James; Rodrigues, Evandra Strazza; Santos, Elaine Vieira; Aburjaile, Flavia; Xavier, Joilson; Fritsch, Hegger; Adelino, Talita Emile Ribeiro; Pereira, Felicidade; Leal, Arabela; Iani, Felipe Campos de Melo; Pereira, Glauco de Carvalho; Vazquez, Cynthia; Sanabria, Gladys Mercedes Estigarribia; Oliveira, Elaine Cristina de; Demarchi, Luiz; Croda, Julio; Bezerra, Rafael dos Santos; Lima, Loyze Paola Oliveira de; Barros, Claudia Renata dos Santos; Marqueze, Elaine Cristina; Bernardino, Jardelina de Souza Todão; Moretti, Debora Botequio; Brassaloti, Ricardo Augusto; Cassano, Raquel de Lello Rocha Campos; Mariani, Pilar Drummond Sampaio Corrêa; Kitajima, João Paulo; Santos, Bibiana; Proto-Siqueira, Rodrigo; Cantarelli, Vlademir Vicente; Tosta, Stephane; Nardy, Vanessa Brandão; Silva, Luciana Reboredo de Oliveira da; Gómez, Marcela Kelly Astete; Lima, Jaqueline Gomes; Ribeiro, Adriana Aparecida; Guimarães, Natália Rocha; Watanabe, Luiz Takao; Silva, Luana Barbosa Da; Ferreira, Raquel da Silva; Penha, Mara Patricia F. da; Ortega, María José; Fuente, Andrea Gómez de la; Villalba, Shirley; Torales, Juan; Gamarra, María Liz; Aquino, Carolina; Figueredo, Gloria Patricia Martínez; Fava, Wellington Santos; Motta-Castro, Ana Rita C.; Venturini, James; Oliveira, Sandra Maria do Vale Leone de; Gonçalves, Crhistinne Cavalheiro Maymone; Rossa, Maria do Carmo Debur; Becker, Guilherme Nardi; Giacomini, Mayra Presibella; Marques, Nelson Quallio; Riediger, Irina Nastassja; Raboni, Sonia; Mattoso, Gabriela; Cataneo, Allan D.; Zanluca, Camila; Santos, Claudia N. Duarte dos; Assato, Patricia Akemi; Costa, Felipe Allan da Silva da; Poleti, Mirele Daiana; Lesbon, Jessika Cristina Chagas; Mattos, Elisangela Chicaroni; Banho, Cecilia Artico; Sacchetto, Lívia; Moraes, Marília Mazzi; Grotto, Rejane Maria Tommasini; Souza-Neto, Jayme A.; Nogueira, Maurício Lacerda; Fukumasu, Heidge; Coutinho, Luiz Lehmann; Calado, Rodrigo Tocantins; Machado Neto, Raul; Filippis, Ana Maria Bispo de; Cunha, Rivaldo Venancio da; Freitas, Carla; Peterka, Cassio Roberto Leonel; Fernandes, Cássia de Fátima Rangel; Navegantes, Wildo; Said, Rodrigo Fabiano do Carmo; Melo, Carlos F. Campelo de A e; Almiron, Maria; Lourenço, José; Oliveira, Tulio de; Holmes, Edward C.; Haddad, Ricardo; Sampaio, Sandra Coccuzzo; Elias, Maria Carolina; Kashima, Simone; Alcantara, Luiz Carlos Junior de; Covas, Dimas Tadeu.
Nat Microbiol, in press, ago. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4488

RESUMEN

The high numbers of COVID-19 cases and deaths in Brazil have made Latin America an epicentre of the pandemic. SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, but important gaps remain in our understanding of virus transmission dynamics at a national scale. We use 17,135 near-complete genomes sampled from 27 Brazilian states and bordering country Paraguay. From March to November 2020, we detected co-circulation of multiple viral lineages that were linked to multiple importations (predominantly from Europe). After November 2020, we detected large, local transmission clusters within the country. In the absence of effective restriction measures, the epidemic progressed, and in January 2021 there was emergence and onward spread, both within and abroad, of variants of concern and variants under monitoring, including Gamma (P.1) and Zeta (P.2). We also characterized a genomic overview of the epidemic in Paraguay and detected evidence of importation of SARS-CoV-2 ancestor lineages and variants of concern from Brazil. Our findings show that genomic surveillance in Brazil enabled assessment of the real-time spread of emerging SARS-CoV-2 variants.

8.
Viruses ; 13(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34960743

RESUMEN

The current COVID-19 pandemic demands massive testing by Real-time RT-PCR (Reverse Transcription Polymerase Chain Reaction), which is considered the gold standard diagnostic test for the detection of the SARS-CoV-2 virus. However, the virus continues to evolve with mutations that lead to phenotypic alterations as higher transmissibility, pathogenicity or vaccine evasion. Another big issue are mutations in the annealing sites of primers and probes of RT-PCR diagnostic kits leading to false-negative results. Therefore, here we identify mutations in the N (Nucleocapsid) gene that affects the use of the GeneFinder COVID-19 Plus RealAmp Kit. We sequenced SARS-CoV-2 genomes from 17 positive samples with no N gene detection but with RDRP (RNA-dependent RNA polymerase) and E (Envelope) genes detection, and observed a set of three different mutations affecting the N detection: a deletion of 18 nucleotides (Del28877-28894), a substitution of GGG to AAC (28881-28883) and a frameshift mutation caused by deletion (Del28877-28878). The last one cause a deletion of six AAs (amino acids) located in the central intrinsic disorder region at protein level. We also found this mutation in 99 of the 14,346 sequenced samples by the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants, demonstrating the circulation of the mutation in Sao Paulo, Brazil. Continuous monitoring and characterization of mutations affecting the annealing sites of primers and probes by genomic surveillance programs are necessary to maintain the effectiveness of the diagnosis of COVID-19.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/genética , SARS-CoV-2/aislamiento & purificación , Brasil/epidemiología , COVID-19/epidemiología , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Cartilla de ADN , Reacciones Falso Negativas , Genoma Viral/genética , Humanos , Mutación , Fosfoproteínas/genética , ARN Viral/genética , SARS-CoV-2/genética
9.
in press, nov. 2021
No convencional en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4025

RESUMEN

Delta VOC is highly diverse and more than 120 sublineages have been identified in Pango lineages with the continuous description of emerging ones. Brazil is now one of the most vaccinated countries against SARS-CoV-2 in the world which can enhance the emergence of viral mutations related to improved viral fitness. In this study, we identified two novel sublineages of the AY.43 lineage which were classified as AY.43.1 and AY.43.2 as observed on the specific clustering on the obtained phylogenetic tree. The novel sublineages were defined by the following characteristic nonsynonymous mutations ORF1ab:A4133V and ORF3a:T14I for AY.43.1 and ORF1ab:G1155C for AY.43.2. The majority of the analyzed sequences of both lineages were Brazilian, which shows that probably these two emerging sublineages have Brazilian origin. It is still unknown how these two sublineages are disseminated in São Paulo State and Brazil and their potential impact on the ongoing vaccination process. However, the performed study reinforces the importance of the SARS-CoV-2 genome monitoring for timely identification of emerging SARS-CoV-2 variants which can impact the ongoing SARS-CoV-2 vaccination and public health policies.

10.
BMC Genomics ; 19(1): 83, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370772

RESUMEN

BACKGROUND: Meat and egg-type chickens have been selected for several generations for different traits. Artificial and natural selection for different phenotypes can change frequency of genetic variants, leaving particular genomic footprints throghtout the genome. Thus, the aims of this study were to sequence 28 chickens from two Brazilian lines (meat and white egg-type) and use this information to characterize genome-wide genetic variations, identify putative regions under selection using Fst method, and find putative pathways under selection. RESULTS: A total of 13.93 million SNPs and 1.36 million INDELs were identified, with more variants detected from the broiler (meat-type) line. Although most were located in non-coding regions, we identified 7255 intolerant non-synonymous SNPs, 512 stopgain/loss SNPs, 1381 frameshift and 1094 non-frameshift INDELs that may alter protein functions. Genes harboring intolerant non-synonymous SNPs affected metabolic pathways related mainly to reproduction and endocrine systems in the white-egg layer line, and lipid metabolism and metabolic diseases in the broiler line. Fst analysis in sliding windows, using SNPs and INDELs separately, identified over 300 putative regions of selection overlapping with more than 250 genes. For the first time in chicken, INDEL variants were considered for selection signature analysis, showing high level of correlation in results between SNP and INDEL data. The putative regions of selection signatures revealed interesting candidate genes and pathways related to important phenotypic traits in chicken, such as lipid metabolism, growth, reproduction, and cardiac development. CONCLUSIONS: In this study, Fst method was applied to identify high confidence putative regions under selection, providing novel insights into selection footprints that can help elucidate the functional mechanisms underlying different phenotypic traits relevant to meat and egg-type chicken lines. In addition, we generated a large catalog of line-specific and common genetic variants from a Brazilian broiler and a white egg layer line that can be used for genomic studies involving association analysis with phenotypes of economic interest to the poultry industry.


Asunto(s)
Proteínas Aviares/genética , Pollos/clasificación , Pollos/genética , Carne/análisis , Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Brasil , Huevos , Genoma , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Fenotipo , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...