Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 18(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235824

RESUMEN

In this article, a study of characteristic vibrations of marine oils separation system is presented. Vibrations analysis allows for the extraction of representative features that could be related to the lifetime of their pieces. Actual measurements were carried out on these systems on Ro-Pax vessels to transport passengers and freight. The vibrations obtained were processed in the frequency domain and following this, they were used in a Genetic Neuro-Fuzzy System in order to design new predictive maintenance strategies. The obtained results show that these techniques as a promising strategy can be utilized to determine incipient faults.

2.
Sensors (Basel) ; 16(4)2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27077868

RESUMEN

In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

3.
Sensors (Basel) ; 9(12): 10023-43, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22303160

RESUMEN

In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...