Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Syst Biol ; 71(3): 547-569, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34329460

RESUMEN

Reticulation, caused by hybridization and allopolyploidization, is considered an important and frequent phenomenon in the evolution of numerous plant lineages. Although both processes represent important driving forces of evolution, they are mostly ignored in phylogenetic studies involving a large number of species. Indeed only a scattering of methods exists to recover a comprehensive reticulated evolutionary history for a broad taxon sampling. Among these methods, comparisons of topologies obtained from plastid markers with those from a few nuclear sequences are favored, even though they restrict in-depth studies of hybridization and polyploidization. The genus Rosa encompasses c. 150 species widely distributed throughout the northern hemisphere and represents a challenging taxonomic group in which hybridization and polyploidization are prominent. Our main objective was to develop a general framework that would take patterns of reticulation into account in the study of the phylogenetic relationships among Rosa species. Using amplicon sequencing, we targeted allele variation in the nuclear genome as well as haploid sequences in the chloroplast genome. We successfully recovered robust plastid and nuclear phylogenies and performed in-depth tests for several scenarios of hybridization using a maximum pseudo-likelihood approach on taxon subsets. Our diploid-first approach followed by hybrid and polyploid grafting resolved most of the evolutionary relationships among Rosa subgenera, sections, and selected species. Based on these results, we provide new directions for a future revision of the infrageneric classification in Rosa. The stepwise strategy proposed here can be used to reconstruct the phylogenetic relationships of other challenging taxonomic groups with large numbers of hybrid and polyploid taxa. [Amplicon sequencing; interspecific hybridization; polyploid detection; reticulate evolution.].


Asunto(s)
Rosa , Hibridación Genética , Funciones de Verosimilitud , Filogenia , Poliploidía , Rosa/genética
2.
Plant J ; 104(1): 185-199, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32639596

RESUMEN

Roses use a non-canonical pathway involving a Nudix hydrolase, RhNUDX1, to synthesize their monoterpenes, especially geraniol. Here we report the characterization of another expressed NUDX1 gene from the rose cultivar Rosa x wichurana, RwNUDX1-2. In order to study the function of the RwNUDX1-2 protein, we analyzed the volatile profiles of an F1 progeny generated by crossing R. chinensis cv. 'Old Blush' with R. x wichurana. A correlation test of the volatilomes with gene expression data revealed that RwNUDX1-2 is involved in the biosynthesis of a group of sesquiterpenoids, especially E,E-farnesol, in addition to other sesquiterpenes. In vitro enzyme assays and heterologous in planta functional characterization of the RwNUDX1-2 gene corroborated this result. A quantitative trait locus (QTL) analysis was performed using the data of E,E-farnesol contents in the progeny and a genetic map was constructed based on gene markers. The RwNUDX1-2 gene co-localized with the QTL for E,E-farnesol content, thereby confirming its function in sesquiterpenoid biosynthesis in R. x wichurana. Finally, in order to understand the structural bases for the substrate specificity of rose NUDX proteins, the RhNUDX1 protein was crystallized, and its structure was refined to 1.7 Å. By molecular modeling of different rose NUDX1 protein complexes with their respective substrates, a structural basis for substrate discrimination by rose NUDX1 proteins is proposed.


Asunto(s)
Proteínas de Plantas/metabolismo , Pirofosfatasas/metabolismo , Rosa/metabolismo , Sesquiterpenos/metabolismo , Farnesol/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Pirofosfatasas/genética , Pirofosfatasas/fisiología , Sitios de Carácter Cuantitativo/genética , Rosa/genética , Alineación de Secuencia , Hidrolasas Nudix
3.
BMC Evol Biol ; 19(1): 152, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31340752

RESUMEN

BACKGROUND: With an ever-growing number of published genomes, many low levels of the Tree of Life now contain several species with enough molecular data to perform shallow-scale phylogenomic studies. Moving away from using just a few universal phylogenetic markers, we can now target thousands of other loci to decipher taxa relationships. Making the best possible selection of informative sequences regarding the taxa studied has emerged as a new issue. Here, we developed a general procedure to mine genomic data, looking for orthologous single-copy loci capable of deciphering phylogenetic relationships below the generic rank. To develop our strategy, we chose the genus Rosa, a rapid-evolving lineage of the Rosaceae family in which several species genomes have recently been sequenced. We also compared our loci to conventional plastid markers, commonly used for phylogenetic inference in this genus. RESULTS: We generated 1856 sequence tags in putative single-copy orthologous nuclear loci. Associated in silico primer pairs can potentially amplify fragments able to resolve a wide range of speciation events within the genus Rosa. Analysis of parsimony-informative site content showed the value of non-coding genomic regions to obtain variable sequences despite the fact that they may be more difficult to target in less related species. Dozens of nuclear loci outperform the conventional plastid phylogenetic markers in terms of phylogenetic informativeness, for both recent and ancient evolutionary divergences. However, conflicting phylogenetic signals were found between nuclear gene tree topologies and the species-tree topology, shedding light on the many patterns of hybridization and/or incomplete lineage sorting that occur in the genus Rosa. CONCLUSIONS: With recently published genome sequence data, we developed a set of single-copy orthologous nuclear loci to resolve species-level phylogenomics in the genus Rosa. This genome-wide scale dataset contains hundreds of highly variable loci which phylogenetic interest was assessed in terms of phylogenetic informativeness and topological conflict. Our target identification procedure can easily be reproduced to identify new highly informative loci for other taxonomic groups and ranks.


Asunto(s)
Núcleo Celular/genética , Dosificación de Gen , Sitios Genéticos , Genómica , Filogenia , Rosa/genética , Cartilla de ADN/metabolismo , Genoma de Planta , Funciones de Verosimilitud , Plastidios/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...