Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000601

RESUMEN

Chagas disease is caused by the intracellular protozoan parasite Trypanosoma cruzi. This disease affects mainly rural areas in Central and South America, where the insect vector is endemic. However, this disease has become a world health problem since migration has spread it to other continents. It is a complex disease with many reservoirs and vectors and high genetic variability. One of the host proteins involved in the pathogenesis is SLAMF1. This immune receptor acts during the infection of macrophages controlling parasite replication and thus affecting survival in mice but in a parasite strain-dependent manner. Therefore, we studied the role of SLAMF1 by quantitative proteomics in a macrophage in vitro infection and the different responses between Y and VFRA strains of Trypanosoma cruzi. We detected different significant up- or downregulated proteins involved in immune regulation processes, which are SLAMF1 and/or strain-dependent. Furthermore, independently of SLAMF1, this parasite induces different responses in macrophages to counteract the infection and kill the parasite, such as type I and II IFN responses, NLRP3 inflammasome activation, IL-18 production, TLR7 and TLR9 activation specifically with the Y strain, and IL-11 signaling specifically with the VFRA strain. These results have opened new research fields to elucidate the concrete role of SLAMF1 and discover new potential therapeutic approaches for Chagas disease.


Asunto(s)
Enfermedad de Chagas , Macrófagos , Proteómica , Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/parasitología , Macrófagos/inmunología , Proteómica/métodos , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/inmunología , Antígenos CD/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Receptores de Superficie Celular/metabolismo , Inflamasomas/metabolismo , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Glicoproteínas de Membrana
2.
EMBO J ; 43(13): 2789-2812, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811853

RESUMEN

It has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here, we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate-limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C. elegans subjected to proteotoxic stress. TRP14 can also reduce cysteinyl moieties on proteins, rescuing their activities as here shown with cysteinylated peroxiredoxin 2. Txndc17 knockout mice were, surprisingly, protected in an acute pancreatitis model, concomitant with activation of Nrf2-driven antioxidant pathways and upregulation of transsulfuration. We conclude that TRP14 is the evolutionarily conserved enzyme principally responsible for intracellular cystine reduction in C. elegans, mice, and humans.


Asunto(s)
Caenorhabditis elegans , Cisteína , Cistina , Ratones Noqueados , Oxidación-Reducción , Proteoma , Tiorredoxinas , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Cistina/metabolismo , Ratones , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Cisteína/metabolismo , Proteoma/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética
3.
Virulence ; 13(1): 1827-1848, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36284085

RESUMEN

The molecular repertoire of Trypanosoma cruzi effects its virulence and impacts the clinical course of the resulting Chagas disease. This study aimed to determine the mechanism underlying the pathogenicity of T. cruzi. Two T. cruzi cell lines (C8C3hvir and C8C3lvir), obtained from the clone H510 C8C3 and exhibiting different virulence phenotypes, were used to evaluate the parasite's infectivity in mice. The organ parasite load was analysed by qPCR. The proteomes of both T. cruzi cell lines were compared using nLC-MS/MS. Cruzipain (Czp), complement regulatory protein (CRP), trans-sialidase (TS), Tc-85, and sialylated epitope expression levels were evaluated by immunoblotting. High-virulence C8C3hvir was highly infectious in mice and demonstrated three to five times higher infectivity in mouse myocardial cells than low-virulence C8C3lvir. qPCR revealed higher parasite loads in organs of acute as well as chronically C8C3hvir-infected mice than in those of C8C3lvir-infected mice. Comparative quantitative proteomics revealed that 390 of 1547 identified proteins were differentially regulated in C8C3hvir with respect to C8C3lvir. Amongst these, 174 proteins were upregulated in C8C3hvir and 216 were downregulated in C8C3lvir. The upregulated proteins in C8C3hvir were associated with the tricarboxylic acid cycle, ribosomal proteins, and redoxins. Higher levels of Czp, CRP, TS, Tc-85, and sialylated epitopes were expressed in C8C3hvir than in C8C3lvir. Thus, T. cruzi virulence may be related to virulence factor expression as well as upregulation of bioenergetic and biosynthetic pathways proteins.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Ratones , Animales , Trypanosoma cruzi/genética , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Regulación hacia Arriba , Espectrometría de Masas en Tándem , Vías Biosintéticas , Proteoma/metabolismo , Enfermedad de Chagas/parasitología , Neuraminidasa/genética , Metabolismo Energético , Epítopos , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
4.
Front Plant Sci ; 12: 794582, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185952

RESUMEN

E3 ubiquitin ligases mediate the last step of the ubiquitination pathway in the ubiquitin-proteasome system (UPS). By targeting transcriptional regulators for their turnover, E3s play a crucial role in every aspect of plant biology. In plants, SKP1/CULLIN1/F-BOX PROTEIN (SCF)-type E3 ubiquitin ligases are essential for the perception and signaling of several key hormones including auxins and jasmonates (JAs). F-box proteins, TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and CORONATINE INSENSITIVE 1 (COI1), bind directly transcriptional repressors AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) and JASMONATE ZIM-DOMAIN (JAZ) in auxin- and JAs-depending manner, respectively, which permits the perception of the hormones and transcriptional activation of signaling pathways. Redox modification of proteins mainly by S-nitrosation of cysteines (Cys) residues via nitric oxide (NO) has emerged as a valued regulatory mechanism in physiological processes requiring its rapid and versatile integration. Previously, we demonstrated that TIR1 and Arabidopsis thaliana SKP1 (ASK1) are targets of S-nitrosation, and these NO-dependent posttranslational modifications enhance protein-protein interactions and positively regulate SCFTIR1 complex assembly and expression of auxin response genes. In this work, we confirmed S-nitrosation of Cys140 in TIR1, which was associated in planta to auxin-dependent developmental and stress-associated responses. In addition, we provide evidence on the modulation of the SCFCOI1 complex by different S-nitrosation events. We demonstrated that S-nitrosation of ASK1 Cys118 enhanced ASK1-COI1 protein-protein interaction. Overexpression of non-nitrosable ask1 mutant protein impaired the activation of JA-responsive genes mediated by SCFCOI1 illustrating the functional relevance of this redox-mediated regulation in planta. In silico analysis positions COI1 as a promising S-nitrosation target, and demonstrated that plants treated with methyl JA (MeJA) or S-nitrosocysteine (NO-Cys, S-nitrosation agent) develop shared responses at a genome-wide level. The regulation of SCF components involved in hormonal perception by S-nitrosation may represent a key strategy to determine the precise time and site-dependent activation of each hormonal signaling pathway and highlights NO as a pivotal molecular player in these scenarios.

5.
Mol Biol Evol ; 37(12): 3485-3506, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32929503

RESUMEN

All animals are capable of undergoing gametogenesis. The ability of forming haploid cells from diploid cells through meiosis and recombination appeared early in eukaryotes, whereas further gamete differentiation is mostly a metazoan signature. Morphologically, the gametogenic process presents many similarities across animal taxa, but little is known about its conservation at the molecular level. Porifera are the earliest divergent animals and therefore are an ideal phylum to understand evolution of the gametogenic toolkits. Although sponge gametogenesis is well known at the histological level, the molecular toolkits for gamete production are largely unknown. Our goal was to identify the genes and their expression levels which regulate oogenesis and spermatogenesis in five gonochoristic and oviparous species of the genus Geodia, using both RNAseq and proteomic analyses. In the early stages of both female and male gametogenesis, genes involved in germ cell fate and cell-renewal were upregulated. Then, molecular signals involved in retinoic acid pathway could trigger the meiotic processes. During later stages of oogenesis, female sponges expressed genes involved in cell growth, vitellogenesis, and extracellular matrix reassembly, which are conserved elements of oocyte maturation in Metazoa. Likewise, in spermatogenesis, genes regulating the whole meiotic cycle, chromatin compaction, and flagellum axoneme formation, that are common across Metazoa were overexpressed in the sponges. Finally, molecular signals possibly related to sperm capacitation were identified during late stages of spermatogenesis for the first time in Porifera. In conclusion, the activated molecular toolkit during gametogenesis in sponges was remarkably similar to that deployed during gametogenesis in vertebrates.


Asunto(s)
Evolución Biológica , Geodia/fisiología , Oogénesis , Espermatogénesis , Animales , Femenino , Geodia/ultraestructura , Masculino , Oocitos/crecimiento & desarrollo , Oocitos/ultraestructura , Proteoma , Espermatozoides/ultraestructura , Transcriptoma
6.
Genes (Basel) ; 11(9)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887454

RESUMEN

Leishmania infantum causes visceral leishmaniasis (kala-azar), the most severe form of leishmaniasis, which is lethal if untreated. A few years ago, the re-sequencing and de novo assembling of the L. infantum (JPCM5 strain) genome was accomplished, and now we aimed to describe and characterize the experimental proteome of this species. In this work, we performed a proteomic analysis from axenic cultured promastigotes and carried out a detailed comparison with other Leishmania experimental proteomes published to date. We identified 2352 proteins based on a search of mass spectrometry data against a database built from the six-frame translated genome sequence of L. infantum. We detected many proteins belonging to organelles such as glycosomes, mitochondria, or flagellum, as well as many metabolic enzymes and many putative RNA binding proteins and molecular chaperones. Moreover, we listed some proteins presenting post-translational modifications, such as phosphorylations, acetylations, and methylations. On the other hand, the identification of peptides mapping to genomic regions previously annotated as non-coding allowed for the correction of annotations, leading to the N-terminal extension of protein sequences and the uncovering of eight novel protein-coding genes. The alliance of proteomics, genomics, and transcriptomics has resulted in a powerful combination for improving the annotation of the L. infantum reference genome.


Asunto(s)
Leishmania infantum/genética , Leishmania infantum/metabolismo , Proteoma/genética , Proteoma/metabolismo , Secuencia de Aminoácidos , Biología Computacional/métodos , Genómica/métodos , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Anotación de Secuencia Molecular/métodos , Péptidos/genética , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteómica/métodos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Espectrometría de Masas en Tándem/métodos
7.
Redox Biol ; 32: 101457, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32088623

RESUMEN

Nitric oxide (NO) is well established as a regulator of neurogenesis. NO increases the proliferation of neural stem cells (NSC), and is essential for hippocampal injury-induced neurogenesis following an excitotoxic lesion. One of the mechanisms underlying non-classical NO cell signaling is protein S-nitrosylation. This post-translational modification consists in the formation of a nitrosothiol group (R-SNO) in cysteine residues, which can promote formation of other oxidative modifications in those cysteine residues. S-nitrosylation can regulate many physiological processes, including neuronal plasticity and neurogenesis. In this work, we aimed to identify S-nitrosylation targets of NO that could participate in neurogenesis. In NSC, we identified a group of proteins oxidatively modified using complementary techniques of thiol redox proteomics. S-nitrosylation of some of these proteins was confirmed and validated in a seizure mouse model of hippocampal injury and in cultured hippocampal stem cells. The identified S-nitrosylated proteins are involved in the ERK/MAPK pathway and may be important targets of NO to enhance the proliferation of NSC.


Asunto(s)
Células-Madre Neurales , S-Nitrosotioles , Animales , Cisteína/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Proteómica , Compuestos de Sulfhidrilo
8.
Mol Cell Proteomics ; 18(10): 2018-2028, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31352363

RESUMEN

Osteoarthritis (OA) is a pathology characterized by the loss of articular cartilage. In this study, we performed a peptidomic strategy to identify endogenous peptides (neopeptides) that are released from human osteoarthritic tissue, which may serve as disease markers. With this aim, secretomes of osteoarthritic and healthy articular cartilages obtained from knee and hip were analyzed by shotgun peptidomics. This discovery step led to the identification of 1175 different peptides, corresponding to 101 proteins, as products of the physiological or pathological turnover of cartilage extracellular matrix. Then, a targeted multiple reaction monitoring-mass spectrometry method was developed to quantify the panel of best marker candidates on a larger set of samples (n = 62). Statistical analyses were performed to evaluate the significance of the observed differences and the ability of the neopeptides to classify the tissue. Eight of them were differentially abundant in the media from wounded zones of OA cartilage compared with the healthy tissue (p < 0.05). Three neopeptides belonging to Clusterin and one from Cartilage Oligomeric Matrix Protein showed a disease-dependent decrease specifically in hip OA, whereas two from Prolargin (PRELP) and one from Cartilage Intermediate Layer Protein 1 were significantly increased in samples from knee OA. The release of one peptide from PRELP showed the best metrics for tissue classification (AUC = 0.834). The present study reveals specific neopeptides that are differentially released from knee or hip human osteoarthritic cartilage compared with healthy tissue. This evidences the intervention of characteristic pathogenic pathways in OA and provides a novel panel of peptidic candidates for biomarker development.


Asunto(s)
Biomarcadores/metabolismo , Cartílago Articular/citología , Osteoartritis de la Cadera/metabolismo , Osteoartritis de la Rodilla/metabolismo , Péptidos/metabolismo , Proteómica/métodos , Anciano , Anciano de 80 o más Años , Cartílago Articular/metabolismo , Cartílago Articular/patología , Estudios de Casos y Controles , Células Cultivadas , Cromatografía Liquida , Medios de Cultivo Condicionados/química , Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Especificidad de Órganos , Osteoartritis de la Cadera/patología , Osteoartritis de la Rodilla/patología , Espectrometría de Masas en Tándem
9.
Redox Biol ; 18: 200-210, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30031268

RESUMEN

The F-box proteins (FBPs) TIR1/AFBs are the substrate recognition subunits of SKP1-cullin-F-box (SCF) ubiquitin ligase complexes and together with Aux/IAAs form the auxin co-receptor. Although tremendous knowledge on auxin perception and signaling has been gained in the last years, SCFTIR1/AFBs complex assembly and stabilization are emerging as new layers of regulation. Here, we investigated how nitric oxide (NO), through S-nitrosylation of ASK1 is involved in SCFTIR1/AFBs assembly. We demonstrate that ASK1 is S-nitrosylated and S-glutathionylated in cysteine (Cys) 37 and Cys118 residues in vitro. Both, in vitro and in vivo protein-protein interaction assays show that NO enhances ASK1 binding to CUL1 and TIR1/AFB2, required for SCFTIR1/AFB2 assembly. In addition, we demonstrate that Cys37 and Cys118 are essential residues for proper activation of auxin signaling pathway in planta. Phylogenetic analysis revealed that Cys37 residue is only conserved in SKP proteins in Angiosperms, suggesting that S-nitrosylation on Cys37 could represent an evolutionary adaption for SKP1 function in flowering plants. Collectively, these findings indicate that multiple events of redox modifications might be part of a fine-tuning regulation of SCFTIR1/AFBs for proper auxin signal transduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Óxido Nítrico/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Modelos Moleculares , Compuestos Nitrosos/metabolismo , Mapas de Interacción de Proteínas , Ubiquitina-Proteína Ligasas/metabolismo
10.
Redox Biol ; 16: 123-128, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29499565

RESUMEN

Under oxidative stress 26S proteasomes suffer reversible disassembly into its 20S and 19S subunits, a process mediated by HSP70. This inhibits the degradation of polyubiquitinated proteins by the 26S proteasome and allows the degradation of oxidized proteins by a free 20S proteasome. Low fluxes of antimycin A-stimulated ROS production caused dimerization of mitochondrial peroxiredoxin 3 and cytosolic peroxiredoxin 2, but not peroxiredoxin overoxidation and overall oxidation of cellular protein thiols. This moderate redox imbalance was sufficient to inhibit the ATP stimulation of 26S proteasome activity. This process was dependent on reversible cysteine oxidation. Moreover, our results show that this early inhibition of ATP stimulation occurs previous to particle disassembly, indicating an intermediate step during the redox regulation of the 26S proteasome with special relevance under redox signaling rather than oxidative stress conditions.


Asunto(s)
Cisteína/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Adenosina Trifosfato/metabolismo , Cisteína/genética , Cisteína Endopeptidasas/metabolismo , Citoplasma/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Mitocondrias/genética , Oxidación-Reducción , Peroxiredoxina III/metabolismo , Peroxirredoxinas/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Ubiquitinación
11.
Antioxid Redox Signal ; 28(1): 15-30, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28648093

RESUMEN

AIMS: Nitric oxide (NO) is involved in the upregulation of endogenous neurogenesis in the subventricular zone and in the hippocampus after injury. One of the main neurogenic pathways activated by NO is the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, downstream of the epidermal growth factor receptor. However, the mechanism by which NO stimulates cell proliferation through activation of the ERK/MAPK pathway remains unknown, although p21Ras seems to be one of the earliest targets of NO. Here, we aimed at studying the possible neurogenic action of NO by post-translational modification of p21Ras as a relevant target for early neurogenic events promoted by NO in neural stem cells (NSCs). RESULTS: We show that NO caused S-nitrosylation (SNO) of p21Ras in Cys118, which triggered downstream activation of the ERK/MAPK pathway and proliferation of NSC. Moreover, in cells overexpressing a mutant Ras in which Cys118 was replaced by a serine-C118S-, cells were insensitive to NO, and no increase in SNO, in ERK phosphorylation, or in cell proliferation was observed. We also show that, after seizures, in the presence of NO derived from inducible nitric oxide synthase, there was an increase in p21Ras cysteine modification that was concomitant with the previously described stimulation of proliferation in the dentate gyrus. INNOVATION: Our work identifies p21Ras and its SNO as an early target of NO during signaling events that lead to NSC proliferation and neurogenesis. CONCLUSION: Our data highlight Ras SNO as an early event leading to NSC proliferation, and they may provide a target for NO-induced stimulation of neurogenesis with implications for brain repair. Antioxid. Redox Signal. 28, 15-30.


Asunto(s)
Neurogénesis , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Convulsiones/metabolismo , Animales , Proliferación Celular , Cisteína/metabolismo , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/genética , Convulsiones/genética , Convulsiones/fisiopatología , Transducción de Señal
12.
Redox Biol ; 12: 1040-1051, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28511347

RESUMEN

Mitochondria use oxygen as the final acceptor of the respiratory chain, but its incomplete reduction can also produce reactive oxygen species (ROS), especially superoxide. Acute hypoxia produces a superoxide burst in different cell types, but the triggering mechanism is still unknown. Herein, we show that complex I is involved in this superoxide burst under acute hypoxia in endothelial cells. We have also studied the possible mechanisms by which complex I could be involved in this burst, discarding reverse electron transport in complex I and the implication of PTEN-induced putative kinase 1 (PINK1). We show that complex I transition from the active to 'deactive' form is enhanced by acute hypoxia in endothelial cells and brain tissue, and we suggest that it can trigger ROS production through its Na+/H+ antiporter activity. These results highlight the role of complex I as a key actor in redox signalling in acute hypoxia.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Células Endoteliales/metabolismo , Superóxidos/metabolismo , Animales , Bovinos , Hipoxia de la Célula , Células Cultivadas , Células Endoteliales/citología , Mitocondrias/metabolismo , Oxidación-Reducción , Proteínas Quinasas/metabolismo , Transducción de Señal
13.
Expert Rev Proteomics ; 14(3): 211-221, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28099817

RESUMEN

INTRODUCTION: Ticks are second to mosquitoes as a vector of human diseases and are the first vector of animal diseases with a great impact on livestock farming. Tick vaccines represent a sustainable and effective alternative to chemical acaricides for the control of tick infestations and transmitted pathogens. The application of proteomics to tick vaccine development is a fairly recent area, which has resulted in the characterization of some tick-host-pathogen interactions and the identification of candidate protective antigens. Areas covered: In this article, we review the application and possibilities of various proteomic approaches for the discovery of tick and pathogen derived protective antigens, and the design of effective vaccines for the control of tick infestations and pathogen infection and transmission. Expert commentary: In the near future, the application of reverse proteomics, immunoproteomics, structural proteomics, and interactomics among other proteomics approaches will likely contribute to improve vaccine design to control multiple tick species with the ultimate goal of controlling tick-borne diseases.


Asunto(s)
Proteómica , Enfermedades por Picaduras de Garrapatas/genética , Vacunas/genética , Animales , Humanos , Infestaciones por Garrapatas/genética , Enfermedades por Picaduras de Garrapatas/inmunología , Garrapatas/genética , Garrapatas/patogenicidad , Vacunas/inmunología
14.
Free Radic Biol Med ; 70: 265-77, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24456905

RESUMEN

Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis. Protein cysteinylation was undetectable in pancreas under basal conditions. Targets of disulfide stress were identified by Western blotting, diagonal electrophoresis, and proteomic methods. Cysteinylated albumin was detected. Redox-sensitive PP2A and tyrosine protein phosphatase activities diminished in pancreatitis and this loss was abrogated by N-acetylcysteine. According to our findings, disulfide stress may be considered a specific type of oxidative stress in acute inflammation associated with protein cysteinylation and γ-glutamylcysteinylation and oxidation of the pair cysteine/cystine, but without glutathione oxidation or changes in protein glutathionylation. Two types of targets of disulfide stress were identified: redox buffers, such as ribonuclease inhibitor or albumin, and redox-signaling thiols, which include thioredoxin 1, APE1/Ref1, Keap1, tyrosine and serine/threonine phosphatases, and protein disulfide isomerase. These targets exhibit great relevance in DNA repair, cell proliferation, apoptosis, endoplasmic reticulum stress, and inflammatory response. Disulfide stress would be a specific mechanism of redox signaling independent of glutathione redox status involved in inflammation.


Asunto(s)
Disulfuros/metabolismo , Estrés Oxidativo , Pancreatitis/metabolismo , Estrés Fisiológico , Animales , Cisteína/metabolismo , Radicales Libres/metabolismo , Disulfuro de Glutatión/metabolismo , Oxidación-Reducción , Pancreatitis/patología , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Compuestos de Sulfhidrilo/metabolismo
15.
Vaccine ; 31(42): 4728-35, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23973246

RESUMEN

Infestations with cattle ticks, Rhipicephalus (Boophilus) microplus and Rhipicephalus annulatus, economically impact cattle production in tropical and subtropical regions of the world. Vaccines containing the recombinant R. microplus BM86 gut antigen were developed and commercialized to induce an immunological protection in cattle against tick infestations. These vaccines demonstrated that tick control by vaccination is cost-effective, reduces environmental contamination and prevents the selection of drug resistant ticks that result from repeated acaricide applications. The protection elicited by BM86-containing vaccines against tick infestations is mediated by a collaborative action between the complement system and IgG antibodies. The efficacy of the vaccination with BM86 and other tick antigens is always higher for R. annulatus than against R. microplus, suggesting that tick genetic and/or physiological factors may affect tick vaccine efficacy. These factors may be related to BM86 protein levels or tick physiological processes such as feeding and protein degradation that could result in more efficient antibody-antigen interactions and vaccine efficacy. To test this hypothesis, we compared the proteome in R. annulatus and R. microplus female ticks after feeding on BM86-vaccinated and control cattle. The results showed that cattle proteins were under represented in R. annulatus when compared to R. microplus, suggesting that R. annulatus ticks ingested less blood, a difference that increased when feeding on vaccinated cattle, probably reflecting the effect of antibody-BM86 interactions on this process. The results also showed that tick protein degradation machinery was under represented in R. annulatus when compared to R. microplus. BM86 mRNA and protein levels were similar in both tick species, suggesting that lesser protease activity in R. annulatus results in more efficient antibody-antigen interactions and higher vaccine efficacy. These results have important implications for tick vaccine research, indicating that not only genetic differences, but also physiological factors may influence tick vaccine efficacy.


Asunto(s)
Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Rhipicephalus/inmunología , Rhipicephalus/metabolismo , Vacunas/inmunología , Vacunas/metabolismo , Animales , Bovinos , Infestaciones Ectoparasitarias/parasitología , Infestaciones Ectoparasitarias/prevención & control , Femenino , Péptido Hidrolasas/metabolismo , Proteolisis , Proteoma/análisis , Rhipicephalus/química
16.
Appl Environ Microbiol ; 79(5): 1555-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23263966

RESUMEN

A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or ß24 improved the K(m) for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site.


Asunto(s)
Penicilina Amidasa/genética , Penicilina Amidasa/metabolismo , Ingeniería de Proteínas , Thermus thermophilus/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Moleculares , Penicilina Amidasa/aislamiento & purificación , Penicilina G/metabolismo , Penicilinas/metabolismo , Conformación Proteica , Especificidad por Sustrato , Thermus thermophilus/genética
17.
J Mol Cell Biol ; 4(5): 316-30, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22878263

RESUMEN

The ubiquitin E3 ligase SIAH2 is an important regulator of the hypoxic response as it leads to the ubiquitin/proteasomal degradation of prolyl hydroxylases such as PHD3, which in turn increases the stability of hypoxia-inducible factor (HIF)-1α. In the present study, we identify the serine/threonine kinase DYRK2 as SIAH2 interaction partner that phosphorylates SIAH2 at five residues (Ser16, Thr26, Ser28, Ser68, and Thr119). Phosphomimetic and phospho-mutant forms of SIAH2 exhibit different subcellular localizations and consequently change in PHD3 degrading activity. Accordingly, phosphorylated SIAH2 is more active than the wild-type E3 ligase and shows an increased ability to trigger the HIF-1α-mediated transcriptional response and angiogenesis. We also found that SIAH2 knockdown increases DYRK2 stability, whereas SIAH2 expression facilitates DYRK2 polyubiquitination and degradation. Hypoxic conditions cause a SIAH2-dependent DYRK2 polyubiquitination and degradation which ultimately also results in an impaired SIAH2 phosphorylation. Similarly, DYRK2-mediated phosphorylation of p53 at Ser46 is impaired under hypoxic conditions, suggesting a molecular mechanism underlying chemotherapy resistance in solid tumors.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión , Hipoxia de la Célula , Línea Celular , Daño del ADN , Células HeLa , Humanos , Ratones , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Transfección , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Quinasas DyrK
18.
Proteome Sci ; 8: 43, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20704695

RESUMEN

BACKGROUND: Ticks are vectors of pathogens that affect human and animal health worldwide. Proteomics and genomics studies of infected ticks are required to understand tick-pathogen interactions and identify potential vaccine antigens to control pathogen transmission. One of the limitations for proteomics research in ticks is the amount of protein that can be obtained from these organisms. In the work reported here, individual naturally-infected and uninfected Rhipicephalus spp. ticks were processed using a method that permits simultaneous extraction of DNA, RNA and proteins. This approach allowed using DNA to determine pathogen infection, protein for proteomics studies and RNA to characterize mRNA levels for some of the differentially expressed proteins. Differential protein expression in response to natural infection with different pathogens was characterized by two-dimensional (2-D) differential in gel electrophoresis (DIGE) saturation labeling in combination with mass spectrometry analysis. To our knowledge, this is the first report of the application of DIGE saturation labeling to study tick proteins. RESULTS: Questing and feeding Rhipicephalus spp. adult ticks were collected in 27 farms located in different Sicilian regions. From 300 collected ticks, only 16 were found to be infected: R. sanguineus with Rickettsia conorii and Ehrlichia canis; R. bursa with Theileria annulata; and R. turanicus with Anaplasma ovis. The proteomic analysis conducted from a limited amount of proteins allowed the identification of host, pathogen and tick proteins differentially expressed as a consequence of infection. CONCLUSION: These results showed that DIGE saturation labeling is a powerful technology for proteomics studies in small number of ticks and provided new information about the effect of pathogen infection in ticks.

19.
J Mol Biol ; 382(3): 652-66, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18662697

RESUMEN

The basis for a dual inhibitory and mutagenic activity of 5-fluorouracil (5-FU) on foot-and-mouth disease virus (FMDV) RNA replication has been investigated with purified viral RNA-dependent RNA polymerase (3D) in vitro. 5-Fluorouridine triphosphate acted as a potent competitive inhibitor of VPg uridylylation, the initial step of viral replication. Peptide analysis by mass spectrometry has identified a VPg fragment containing 5-fluorouridine monophosphate (FUMP) covalently attached to Tyr3, the amino acid target of the uridylylation reaction. During RNA elongation, FUMP was incorporated in the place of UMP or CMP by FMDV 3D, using homopolymeric and heteropolymeric templates. Incorporation of FUMP did not prevent chain elongation, and, in some sequence contexts, it favored misincorporations at downstream positions. When present in the template, FUMP directed the incorporation of AMP and GMP, with ATP being a more effective substrate than GTP. The misincorporation of GMP was 17-fold faster opposite FU than opposite U in the template. These results in vitro are consistent with the mutational bias observed in the mutant spectra of 5-FU-treated FMDV populations. The dual mutagenic and inhibitory activity of 5-fluorouridine triphosphate may contribute to the effective extinction of FMDV by 5-FU through virus entry into error catastrophe.


Asunto(s)
Virus de la Fiebre Aftosa , Mutagénesis , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Uridina Trifosfato/análogos & derivados , Proteínas Virales/metabolismo , Animales , Antimetabolitos/metabolismo , Secuencia de Bases , Línea Celular , Fluorouracilo/metabolismo , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Genoma Viral , Humanos , ARN Polimerasa Dependiente del ARN/genética , Uridina Monofosfato/metabolismo , Uridina Trifosfato/metabolismo , Proteínas Virales/genética , Replicación Viral/fisiología
20.
J Mass Spectrom ; 42(11): 1391-403, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17960563

RESUMEN

Mass spectrometry (MS) is a technique of paramount importance in Proteomics, and developments in this field have been possible owing to novel MS instrumentation, experimental strategies, and bioinformatics tools. Today it is possible to identify and determine relative expression levels of thousands of proteins in a biological system by MS analysis of peptides produced by proteolytic digestion. In some situations, however, the precise characterization of a particular peptide species in a very complex peptide mixture is needed. While single-fragment ion-based scanning modes such as selected ion reaction monitoring (SIRM) or consecutive reaction monitoring (CRM) may be highly sensitive, they do not produce MS/MS information and their actual specificity must be determined in advance, a prerequisite that is not usually met in a basic research context. In such cases, the MS detector may be programmed to perform continuous MS/MS spectra on the peptide ion of interest in order to obtain structural information. This selected MS/MS ion monitoring (SMIM) mode has a number of advantages that are fully exploited by MS detectors that, like the linear ion trap, are characterized by high scanning speeds. In this work, we show some applications of this technique in the context of biological studies. These results were obtained by selecting an appropriate combination of scans according to the purpose of each one of these research scenarios. They include highly specific identification of proteins present in low amounts, characterization and relative quantification of post-translational modifications such as phosphorylation and S-nitrosylation and species-specific peptide identification.


Asunto(s)
Fragmentos de Péptidos/análisis , Proteínas/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Conexina 43/análisis , Cisteína/análogos & derivados , Cisteína/análisis , Cisteína/metabolismo , Electroforesis en Gel de Poliacrilamida , Células Endoteliales/química , Células Endoteliales/metabolismo , Productos Pesqueros/análisis , Gadiformes , Proteínas HSP90 de Choque Térmico/análisis , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Factores de Transcripción NFATC/análisis , Factores de Transcripción NFATC/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , S-Nitrosotioles/análisis , S-Nitrosotioles/metabolismo , Especificidad de la Especie , Tripsina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...