Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Physiol ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843467

RESUMEN

The brain requires an uninterrupted supply of oxygen and nutrients to support the high metabolic needs of billions of nerve cells processing information. In low oxygen conditions, increases in cerebral blood flow maintain brain oxygen delivery, but the cellular and molecular mechanisms responsible for dilation of cerebral blood vessels in response to hypoxia are not fully understood. This article presents a systematic review and analysis of data reported in studies of these mechanisms. Our primary outcome measure was the percent reduction of the cerebrovascular response to hypoxia in conditions of pharmacological or genetic blockade of specific signaling mechanisms studied in experimental animals or in humans. Selection criteria were met by 28 articles describing the results of animal studies and six articles describing the results of studies conducted in humans. Selected studies investigated the potential involvement of various neurotransmitters, neuromodulators, vasoactive molecules and ion channels. Of all the experimental conditions, blockade of adenosine-mediated signaling and inhibition of ATP-sensitive potassium (KATP) channels had the most significant effect in reducing the cerebrovascular response to hypoxia (by 49% and 37%, respectively). Various degree reductions of the hypoxic response were also reported in studies which investigated the roles of nitric oxide, arachidonic acid derivates, catecholamines and hydrogen sulphide, amongst others. However, definitive conclusions about the importance of these signaling pathways cannot be drawn from the results of this analysis. In conclusion, there is significant evidence that one of the key mechanisms of hypoxic cerebral vasodilation (accounting for ∼50% of the response) involves the actions of adenosine and modulation of vascular KATP channels. However, recruitment of other vasodilatory signaling mechanisms is required for the full expression of the cerebrovascular response to hypoxia.

2.
J Physiol ; 602(1): 223-240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37742121

RESUMEN

Current models of respiratory CO2 chemosensitivity are centred around the function of a specific population of neurons residing in the medullary retrotrapezoid nucleus (RTN). However, there is significant evidence suggesting that chemosensitive neurons exist in other brainstem areas, including the rhythm-generating region of the medulla oblongata - the preBötzinger complex (preBötC). There is also evidence that astrocytes, non-neuronal brain cells, contribute to central CO2 chemosensitivity. In this study, we reevaluated the relative contributions of the RTN neurons, the preBötC astrocytes, and the carotid body chemoreceptors in mediating the respiratory responses to CO2 in experimental animals (adult laboratory rats). To block astroglial signalling via exocytotic release of transmitters, preBötC astrocytes were targeted to express the tetanus toxin light chain (TeLC). Bilateral expression of TeLC in preBötC astrocytes was associated with ∼20% and ∼30% reduction of the respiratory response to CO2 in conscious and anaesthetized animals, respectively. Carotid body denervation reduced the CO2 respiratory response by ∼25%. Bilateral inhibition of RTN neurons transduced to express Gi-coupled designer receptors exclusively activated by designer drug (DREADDGi ) by application of clozapine-N-oxide reduced the CO2 response by ∼20% and ∼40% in conscious and anaesthetized rats, respectively. Combined blockade of astroglial signalling in the preBötC, inhibition of RTN neurons and carotid body denervation reduced the CO2 -induced respiratory response by ∼70%. These data further support the hypothesis that the CO2 -sensitive drive to breathe requires inputs from the peripheral chemoreceptors and several central chemoreceptor sites. At the preBötC level, astrocytes modulate the activity of the respiratory network in response to CO2 , either by relaying chemosensory information (i.e. they act as CO2  sensors) or by enhancing the preBötC network excitability to chemosensory inputs. KEY POINTS: This study reevaluated the roles played by the carotid bodies, neurons of the retrotrapezoid nucleus (RTN) and astrocytes of the preBötC in mediating the CO2 -sensitive drive to breathe. The data obtained show that disruption of preBötC astroglial signalling, blockade of inputs from the peripheral chemoreceptors or inhibition of RTN neurons similarly reduce the respiratory response to hypercapnia. These data provide further support for the hypothesis that the CO2 -sensitive drive to breathe is mediated by the inputs from the peripheral chemoreceptors and several central chemoreceptor sites.


Asunto(s)
Cuerpo Carotídeo , Ratas , Animales , Cuerpo Carotídeo/fisiología , Dióxido de Carbono/metabolismo , Astrocitos/fisiología , Células Quimiorreceptoras/metabolismo , Respiración , Bulbo Raquídeo/fisiología
3.
Mol Cell Neurosci ; 124: 103806, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592801

RESUMEN

Previously, we have shown that purinergic signalling is involved in the control of hyperosmotic-induced sympathoexcitation at the level of the PVN, via activation of P2X receptors. However, the source(s) of ATP that drives osmotically-induced increases in sympathetic outflow remained undetermined. Here, we tested the two competing hypotheses that either (1) higher extracellular ATP in PVN during salt loading (SL) is a result of a failure of ectonucleotidases to metabolize ATP; and/or (2) SL can stimulate PVN astrocytes to release ATP. Rats were salt loaded with a 2 % NaCl solution replacing drinking water up to 4 days, an experimental model known to cause a gradual increase in blood pressure and plasma osmolarity. Immunohistochemical assessment of glial-fibrillary acidic protein (GFAP) revealed increased glial cell reactivity in the PVN of rats after 4 days of high salt exposure. ATP and adenosine release measurements via biosensors in hypothalamic slices showed that baseline ATP release was increased 17-fold in the PVN while adenosine remained unchanged. Disruption of Ca2+-dependent vesicular release mechanisms in PVN astrocytes by virally-driven expression of a dominant-negative SNARE protein decreased the release of ATP. The activity of ectonucleotidases quantified in vitro by production of adenosine from ATP was increased in SL group. Our results showed that SL stimulates the release of ATP in the PVN, at least in part, from glial cells by a vesicle-mediated route and likely contributes to the neural control of circulation during osmotic challenges.


Asunto(s)
Núcleo Hipotalámico Paraventricular , Cloruro de Sodio , Ratas , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo , Astrocitos/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina
4.
Adv Sci (Weinh) ; 9(6): e2104194, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34927381

RESUMEN

Astrocytes play crucial and diverse roles in brain health and disease. The ability to selectively control astrocytes provides a valuable tool for understanding their function and has the therapeutic potential to correct dysfunction. Existing technologies such as optogenetics and chemogenetics require the introduction of foreign proteins, which adds a layer of complication and hinders their clinical translation. A novel technique, magnetomechanical stimulation (MMS), that enables remote and selective control of astrocytes without genetic modification is described here. MMS exploits the mechanosensitivity of astrocytes and triggers mechanogated Ca2+ and adenosine triphosphate (ATP) signaling by applying a magnetic field to antibody-functionalized magnetic particles that are targeted to astrocytes. Using purpose-built magnetic devices, the mechanosensory threshold of astrocytes is determined, a sub-micrometer particle for effective MMS is identified, the in vivo fate of the particles is established, and cardiovascular responses are induced in rats after particles are delivered to specific brainstem astrocytes. By eliminating the need for device implantation and genetic modification, MMS is a method for controlling astroglial activity with an improved prospect for clinical application than existing technologies.


Asunto(s)
Astrocitos/fisiología , Encéfalo/fisiología , Campos Magnéticos , Mecanotransducción Celular/fisiología , Estimulación Física/métodos , Animales , Tronco Encefálico/fisiología , Células Cultivadas , Femenino , Masculino , Modelos Animales , Ratas , Ratas Sprague-Dawley
5.
Med Teach ; 43(4): 463-471, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33502276

RESUMEN

INTRODUCTION: This study examined the effects of a large-scale flipped learning (FL) approach in an undergraduate course of Digestive System Diseases. METHODS: This prospective non-randomized trial recruited 404 students over three academic years. In 2016, the course was taught entirely in a Traditional Lecture (TL) style, in 2017 half of the course (Medical topics) was replaced by FL while the remaining half (Surgical topics) was taught by TL and in 2018, the whole course was taught entirely by FL. Academic performance, class attendance and student's satisfaction surveys were compared between cohorts. RESULTS: Test scores were higher in the FL module (Medical) than in the TL module (Surgical) in the 2017 cohort but were not different when both components were taught entirely by TL (2016) or by FL (2018). Also, FL increased the probability of reaching superior grades (scores >7.0) and improved class attendance and students' satisfaction. CONCLUSION: The holistic FL model is more effective for teaching undergraduate clinical gastroenterology compared to traditional teaching methods and has a positive impact on classroom attendances.


Asunto(s)
Enfermedades del Sistema Digestivo , Evaluación Educacional , Curriculum , Humanos , Aprendizaje Basado en Problemas , Estudios Prospectivos , Estudiantes , Enseñanza
7.
J Neurosci ; 40(49): 9364-9371, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33122390

RESUMEN

Mechanosensitivity is a well-known feature of astrocytes, however, its underlying mechanisms and functional significance remain unclear. There is evidence that astrocytes are acutely sensitive to decreases in cerebral perfusion pressure and may function as intracranial baroreceptors, tuned to monitor brain blood flow. This study investigated the mechanosensory signaling in brainstem astrocytes, as these cells reside alongside the cardiovascular control circuits and mediate increases in blood pressure and heart rate induced by falls in brain perfusion. It was found that mechanical stimulation-evoked Ca2+ responses in astrocytes of the rat brainstem were blocked by (1) antagonists of connexin channels, connexin 43 (Cx43) blocking peptide Gap26, or Cx43 gene knock-down; (2) antagonists of TRPV4 channels; (3) antagonist of P2Y1 receptors for ATP; and (4) inhibitors of phospholipase C or IP3 receptors. Proximity ligation assay demonstrated interaction between TRPV4 and Cx43 channels in astrocytes. Dye loading experiments showed that mechanical stimulation increased open probability of carboxyfluorescein-permeable membrane channels. These data suggest that mechanosensory Ca2+ responses in astrocytes are mediated by interaction between TRPV4 and Cx43 channels, leading to Cx43-mediated release of ATP which propagates/amplifies Ca2+ signals via P2Y1 receptors and Ca2+ recruitment from the intracellular stores. In astrocyte-specific Cx43 knock-out mice the magnitude of heart rate responses to acute increases in intracranial pressure was not affected by Cx43 deficiency. However, these animals displayed lower heart rates at different levels of cerebral perfusion, supporting the hypothesis of connexin hemichannel-mediated release of signaling molecules by astrocytes having an excitatory action on the CNS sympathetic control circuits.SIGNIFICANCE STATEMENT There is evidence suggesting that astrocytes may function as intracranial baroreceptors that play an important role in the control of systemic and cerebral circulation. To function as intracranial baroreceptors, astrocytes must possess a specialized membrane mechanism that makes them exquisitely sensitive to mechanical stimuli. This study shows that opening of connexin 43 (Cx43) hemichannels leading to the release of ATP is the key central event underlying mechanosensory Ca2+ responses in astrocytes. This astroglial mechanism plays an important role in the autonomic control of heart rate. These data add to the growing body of evidence suggesting that astrocytes function as versatile surveyors of the CNS metabolic milieu, tuned to detect conditions of potential metabolic threat, such as hypoxia, hypercapnia, and reduced perfusion.


Asunto(s)
Astrocitos/fisiología , Mecanotransducción Celular/fisiología , Adenosina Trifosfato/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Circulación Cerebrovascular/fisiología , Conexina 43/antagonistas & inhibidores , Conexina 43/genética , Femenino , Frecuencia Cardíaca/fisiología , Masculino , Mecanotransducción Celular/efectos de los fármacos , Ratones , Ratones Noqueados , Péptidos/antagonistas & inhibidores , Péptidos/genética , Estimulación Física , Ratas , Receptores Purinérgicos P2Y1/efectos de los fármacos , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética
8.
Brain Sci ; 10(9)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32846874

RESUMEN

Synuclein (α, ß, and γ) proteins are highly expressed in presynaptic terminals, and significant data exist supporting their role in regulating neurotransmitter release. Targeting the gene encoding α-synuclein is the basis of many animal models of Parkinson's disease (PD). However, the physiological role of this family of proteins in not well understood and could be especially relevant as interfering with accumulation of α-synuclein level has therapeutic potential in limiting PD progression. The long-term effects of their removal are unknown and given the complex pathophysiology of PD, could exacerbate other clinical features of the disease, for example dysautonomia. In the present study, we sought to characterize the autonomic phenotypes of mice lacking all synucleins (α, ß, and γ; αßγ-/-) in order to better understand the role of synuclein-family proteins in autonomic function. We probed respiratory and cardiovascular reflexes in conscious and anesthetized, young (4 months) and aged (18-20 months) αßγ-/- male mice. Aged mice displayed impaired respiratory responses to both hypoxia and hypercapnia when breathing activities were recorded in conscious animals using whole-body plethysmography. These animals were also found to be hypertensive from conscious blood pressure recordings, to have reduced pressor baroreflex gain under anesthesia, and showed reduced termination of both pressor and depressor reflexes. The present data demonstrate the importance of synuclein in the normal function of respiratory and cardiovascular reflexes during aging.

9.
Mol Metab ; 39: 101024, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32446875

RESUMEN

OBJECTIVE: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used as anti-diabetic drugs and are approved for obesity treatment. However, GLP-1RAs also affect heart rate (HR) and arterial blood pressure (ABP) in rodents and humans. Although the activation of GLP-1 receptors (GLP-1R) is known to increase HR, the circuits recruited are unclear, and in particular, it is unknown whether GLP-1RAs activate preproglucagon (PPG) neurons, the brain source of GLP-1, to elicit these effects. METHODS: We investigated the effect of GLP-1RAs on heart rate in anaesthetized adult mice. In a separate study, we manipulated the activity of nucleus tractus solitarius (NTS) PPG neurons (PPGNTS) in awake, freely behaving transgenic Glu-Cre mice implanted with biotelemetry probes and injected with AAV-DIO-hM3Dq:mCherry or AAV-mCherry-FLEX-DTA. RESULTS: Systemic administration of the GLP-1RA Ex-4 increased resting HR in anaesthetized or conscious mice, but had no effect on ABP in conscious mice. This effect was abolished by ß-adrenoceptor blockade with atenolol, but unaffected by the muscarinic antagonist atropine. Furthermore, Ex-4-induced tachycardia persisted when PPGNTS neurons were ablated, and Ex-4 did not induce expression of the neuronal activity marker cFos in PPGNTS neurons. PPGNTS ablation or acute chemogenetic inhibition of these neurons via hM4Di receptors had no effect on resting HR. In contrast, chemogenetic activation of PPGNTS neurons increased resting HR. Furthermore, the application of GLP-1 within the subarachnoid space of the middle thoracic spinal cord, a major projection target of PPG neurons, increased HR. CONCLUSIONS: These results demonstrate that both systemic application of Ex-4 or GLP-1 and chemogenetic activation of PPGNTS neurons increases HR. Ex-4 increases the activity of cardiac sympathetic preganglionic neurons of the spinal cord without recruitment of PPGNTS neurons, and thus likely recapitulates the physiological effects of PPG neuron activation. These neurons therefore do not play a significant role in controlling resting HR and ABP but are capable of inducing tachycardia and so are likely involved in cardiovascular responses to acute stress.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Frecuencia Cardíaca , Neuronas/metabolismo , Proglucagón/biosíntesis , Núcleo Solitario/fisiología , Taquicardia/etiología , Taquicardia/metabolismo , Animales , Modelos Animales de Enfermedad , Electrocardiografía , Exenatida/farmacología , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Núcleo Solitario/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Taquicardia/diagnóstico
10.
Front Physiol ; 11: 236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256390

RESUMEN

Sudden cardiac death caused by ventricular arrhythmias is among the leading causes of mortality, with approximately half of all deaths attributed to heart disease worldwide. Periodic repolarization dynamics (PRD) is a novel marker of repolarization instability and strong predictor of death in patients post-myocardial infarction that is believed to occur in association with low-frequency oscillations in sympathetic nerve activity. However, this hypothesis is based on associations of PRD with indices of sympathetic activity that are not directly linked to cardiac function, such as muscle vasoconstrictor activity and the variability of cardiovascular autospectra. In this review article, we critically evaluate existing scientific evidence obtained primarily in experimental animal models, with the aim of identifying the neuronal networks responsible for the generation of low-frequency sympathetic rhythms along the neurocardiac axis. We discuss the functional significance of rhythmic sympathetic activity on neurotransmission efficacy and explore its role in the pathogenesis of ventricular repolarization instability. Most importantly, we discuss important gaps in our knowledge that require further investigation in order to confirm the hypothesis that low frequency cardiac sympathetic oscillations play a causative role in the generation of PRD.

11.
J Neurosci ; 40(15): 3052-3062, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32132265

RESUMEN

Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular release mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p < 0.001). This effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP is considered the principle gliotransmitter and is released by vesicular mechanisms blocked by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, pharmacological activation of P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p = 0.031), whereas blockade of P2Y1 receptors increased baroreflex gain by 57% (p = 0.018). These results suggest that glutamate and 5-HT, released by NTS afferent terminals, trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in brain information processing.SIGNIFICANCE STATEMENT Cardiorespiratory reflexes maintain autonomic balance and ensure cardiovascular health. Impaired baroreflex may contribute to the development of cardiovascular disease and serves as a robust predictor of cardiovascular and all-cause mortality. The data obtained in this study suggest that astrocytes are integral components of the brainstem mechanisms that process afferent information and modulate baroreflex sensitivity via the release of ATP. Any condition associated with higher levels of "ambient" ATP in the NTS would be expected to decrease baroreflex gain by the mechanism described here. As ATP is the primary signaling molecule of glial cells (astrocytes, microglia), responding to metabolic stress and inflammatory stimuli, our study suggests a plausible mechanism of how the central component of the baroreflex is affected in pathological conditions.


Asunto(s)
Astrocitos/fisiología , Barorreflejo/fisiología , Núcleo Solitario/fisiología , Adenosina Trifosfato/fisiología , Animales , Señalización del Calcio/fisiología , Masculino , Neuronas Aferentes/metabolismo , Neurotransmisores/metabolismo , Neurotransmisores/fisiología , Agonistas del Receptor Purinérgico P2Y/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptores AMPA/efectos de los fármacos , Receptores Purinérgicos P2Y1/efectos de los fármacos , Proteínas SNARE/fisiología , Serotonina/farmacología , Estimulación del Nervio Vago
12.
Nat Commun ; 11(1): 131, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919423

RESUMEN

Astrocytes provide neurons with essential metabolic and structural support, modulate neuronal circuit activity and may also function as versatile surveyors of brain milieu, tuned to sense conditions of potential metabolic insufficiency. Here we show that astrocytes detect falling cerebral perfusion pressure and activate CNS autonomic sympathetic control circuits to increase systemic arterial blood pressure and heart rate with the purpose of maintaining brain blood flow and oxygen delivery. Studies conducted in experimental animals (laboratory rats) show that astrocytes respond to acute decreases in brain perfusion with elevations in intracellular [Ca2+]. Blockade of Ca2+-dependent signaling mechanisms in populations of astrocytes that reside alongside CNS sympathetic control circuits prevents compensatory increases in sympathetic nerve activity, heart rate and arterial blood pressure induced by reductions in cerebral perfusion. These data suggest that astrocytes function as intracranial baroreceptors and play an important role in homeostatic control of arterial blood pressure and brain blood flow.


Asunto(s)
Astrocitos/fisiología , Presión Sanguínea/fisiología , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Frecuencia Cardíaca/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Hemodinámica , Homeostasis , Ratas , Ratas Sprague-Dawley , Sistema Nervioso Simpático/fisiología
13.
J Hypertens ; 36(12): 2444-2452, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30045362

RESUMEN

BACKGROUND: Arterial hypertension is associated with autonomic nervous system dysfunction. Different interventional strategies have been implemented in recent years for the reduction of sympathetic activity in patients with hypertension. However, the therapeutic benefit of increasing vagal tone in hypertensive patients remains largely unexplored. OBJECTIVE: Here, we describe the effects of long-term activation of vagal neural pathways on arterial pressure, heart rate arterial pressure variability and spontaneous baroreflex sensitivity in spontaneously hypertensive rats (SHR) and normotensive Wistar rats. METHODS: Brainstem vagal preganglionic neurons residing in the dorsal vagal motor nucleus (DVMN) were targeted with a lentiviral vector to induce the expression of an artificial G(s) protein-coupled receptor termed designer receptors exclusively activated by designer drugs (DREADD-Gs). The transduced neurons were activated daily by systemic administration of otherwise inert ligand clozapine-n-oxide. Arterial pressure measurements were recorded in conscious freely moving animals after 21 consecutive days of DVMN stimulation. RESULTS: Resting arterial pressure was significantly lower in SHRs expressing DREADD-Gs in the DVMN, compared with control SHRs expressing enhanced green fluorescent protein. No changes in arterial pressure were detected in Wistar rats expressing DREADD-Gs compared with rats expressing enhanced green fluorescent protein in the DVMN. Pharmacogenetic activation of DREADD-Gs-expressing DVMN neurons in SHRs was accompanied with increased baroreflex sensitivity and a paradoxical decrease in cardio-vagal components of heart rate and systolic arterial pressure variability in SHRs. CONCLUSION: These results suggest that long-term activation of vagal parasympathetic pathways is beneficial in restoring autonomic balance in an animal model of neurogenic hypertension and might be an effective therapeutic approach for the management of hypertension.


Asunto(s)
Presión Arterial , Hipertensión/fisiopatología , Hipertensión/terapia , Receptores Acoplados a Proteínas G/genética , Nervio Vago , Animales , Antipsicóticos/farmacología , Fibras Autónomas Preganglionares/efectos de los fármacos , Barorreflejo , Clozapina/análogos & derivados , Clozapina/farmacología , Vectores Genéticos , Corazón/inervación , Corazón/fisiopatología , Frecuencia Cardíaca , Masculino , Bulbo Raquídeo/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Factores de Tiempo , Transducción Genética , Nervio Vago/efectos de los fármacos
14.
Nat Commun ; 9(1): 370, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371650

RESUMEN

Astrocytes are implicated in modulation of neuronal excitability and synaptic function, but it remains unknown if these glial cells can directly control activities of motor circuits to influence complex behaviors in vivo. This study focused on the vital respiratory rhythm-generating circuits of the preBötzinger complex (preBötC) and determined how compromised function of local astrocytes affects breathing in conscious experimental animals (rats). Vesicular release mechanisms in astrocytes were disrupted by virally driven expression of either the dominant-negative SNARE protein or light chain of tetanus toxin. We show that blockade of vesicular release in preBötC astrocytes reduces the resting breathing rate and frequency of periodic sighs, decreases rhythm variability, impairs respiratory responses to hypoxia and hypercapnia, and dramatically reduces the exercise capacity. These findings indicate that astrocytes modulate the activity of CNS circuits generating the respiratory rhythm, critically contribute to adaptive respiratory responses in conditions of increased metabolic demand and determine the exercise capacity.


Asunto(s)
Astrocitos/fisiología , Tronco Encefálico/fisiología , Periodicidad , Condicionamiento Físico Animal/fisiología , Respiración , Potenciales de Acción/fisiología , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Tronco Encefálico/citología , Calcio/metabolismo , Femenino , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Masculino , Bulbo Raquídeo/citología , Bulbo Raquídeo/fisiología , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Proteínas SNARE/antagonistas & inhibidores , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
15.
Glia ; 66(6): 1185-1199, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29274121

RESUMEN

Astrocytes support neuronal function by providing essential structural and nutritional support, neurotransmitter trafficking and recycling and may also contribute to brain information processing. In this article we review published results and report new data suggesting that astrocytes function as versatile metabolic sensors of central nervous system (CNS) milieu and play an important role in the maintenance of brain metabolic homeostasis. We discuss anatomical and functional features of astrocytes that allow them to detect and respond to changes in the brain parenchymal levels of metabolic substrates (oxygen and glucose), and metabolic waste products (carbon dioxide). We report data suggesting that astrocytes are also sensitive to circulating endocrine signals-hormones like ghrelin, glucagon-like peptide-1 and leptin, that have a major impact on the CNS mechanisms controlling food intake and energy balance. We discuss signaling mechanisms that mediate communication between astrocytes and neurons and consider how these mechanisms are recruited by astrocytes activated in response to various metabolic challenges. We review experimental data suggesting that astrocytes modulate the activities of the respiratory and autonomic neuronal networks that ensure adaptive changes in breathing and sympathetic drive in order to support the physiological and behavioral demands of the organism in ever-changing environmental conditions. Finally, we discuss evidence suggesting that altered astroglial function may contribute to the pathogenesis of disparate neurological, respiratory and cardiovascular disorders such as Rett syndrome and systemic arterial hypertension.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Animales , Humanos
16.
Nat Commun ; 8: 15097, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28516907

RESUMEN

Indirect measures of cardiac vagal activity are strongly associated with exercise capacity, yet a causal relationship has not been established. Here we show that in rats, genetic silencing of the largest population of brainstem vagal preganglionic neurons residing in the brainstem's dorsal vagal motor nucleus dramatically impairs exercise capacity, while optogenetic recruitment of the same neuronal population enhances cardiac contractility and prolongs exercise endurance. These data provide direct experimental evidence that parasympathetic vagal drive generated by a defined CNS circuit determines the ability to exercise. Decreased activity and/or gradual loss of the identified neuronal cell group provides a neurophysiological basis for the progressive decline of exercise capacity with aging and in diverse disease states.


Asunto(s)
Tolerancia al Ejercicio/fisiología , Bulbo Raquídeo/citología , Contracción Miocárdica/fisiología , Neuronas/fisiología , Nervio Vago/fisiología , Anciano , Animales , Encéfalo/metabolismo , Encéfalo/patología , Tronco Encefálico/fisiología , Gasto Cardíaco , Prueba de Esfuerzo , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Masculino , Bulbo Raquídeo/fisiología , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología , Optogenética , Consumo de Oxígeno , Sistema Nervioso Parasimpático/fisiopatología , Resistencia Física/fisiología , Ratas
17.
Exp Physiol ; 102(4): 389-396, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28120502

RESUMEN

NEW FINDINGS: What is the central question of this study? Arterial hypertension is associated with impaired neurovascular coupling in the somatosensory cortex. Abnormalities in activity-dependent oxygen consumption in brainstem regions involved in the control of cardiovascular reflexes have not been explored previously. What is the main finding and its importance? Using fast-cyclic voltammetry, we found that changes in local tissue PO2 in the nucleus tractus solitarii induced by electrical stimulation of the vagus nerve are significantly impaired in spontaneously hypertensive rats. This is consistent with previous observations showing that brainstem hypoxia plays an important role in the pathogenesis of arterial hypertension. The effects of arterial hypertension on cerebral blood flow remain poorly understood. Haemodynamic responses within the somatosensory cortex have been shown to be impaired in the spontaneously hypertensive rat (SHR) model. However, it is unknown whether arterial hypertension affects oxygen homeostasis in vital brainstem areas that control cardiovascular reflexes. In this study, we assessed vagus nerve stimulation-induced changes in local tissue PO2 (PtO2) in the caudal nucleus tractus solitarii (cNTS) of SHRs and normotensive Wistar rats. Measurements of PtO2 were performed using a novel application of fast-cyclic voltammetry, which allows higher temporal resolution of O2 changes than traditional optical fluorescence techniques. Electrical stimulation of the central cut end of the vagus nerve (ESVN) caused profound reductions in arterial blood pressure along with biphasic changes in PtO2 in the cNTS, characterized by a rapid decrease in PtO2 ('initial dip') followed by a post-stimulus overshoot above baseline. The initial dip was found to be significantly smaller in SHRs compared with normotensive Wistar rats even after ganglionic blockade. The post-ESVN overshoot was similar in both groups but was reduced in Wistar rats after ganglionic blockade. In conclusion, neural activity-dependent changes in tissue oxygen in brainstem cardiovascular autonomic centres are significantly impaired in animals with arterial hypertension.


Asunto(s)
Homeostasis/fisiología , Hipertensión/metabolismo , Oxígeno/metabolismo , Núcleo Solitario/metabolismo , Animales , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatología , Frecuencia Cardíaca/fisiología , Hipertensión/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Núcleo Solitario/fisiopatología
18.
J Neurosci ; 36(42): 10750-10758, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27798130

RESUMEN

Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H+]. These astrocytes respond to decreases in pH with elevations in intracellular Ca2+ and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca2+ excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H+] with Ca2+ responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na+]i and/or [Ca2+]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca2+]i responses triggered by decreases in pH are preceded by Na+ entry, markedly reduced by inhibition of Na+/HCO3- cotransport (NBC) or Na+/Ca2+ exchange (NCX), and abolished in Na+-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca2+]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na+/HCO3- cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na+/H+ exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na+ inside the cell. Raising [Na+]i activates NCX to operate in a reverse mode, leading to Ca2+ entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H+ sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing. SIGNIFICANCE STATEMENT: Brainstem astrocytes detect physiological changes in pH, activate neurons of the neighboring respiratory network, and contribute to the development of adaptive respiratory responses to the increases in the level of blood and brain PCO2/[H+]. The mechanisms underlying astroglial pH sensitivity remained unknown and here we show that in brainstem astrocytes acidification activates Na+/HCO3- cotransport, which brings Na+ inside the cell. Raising [Na+]i activates the Na+/Ca2+ exchanger to operate in a reverse mode leading to Ca2+ entry. This identifies a plausible mechanism of functional CO2/H+ sensitivity of brainstem astrocytes, which play an important role in homeostatic regulation of brain pH and control of breathing.


Asunto(s)
Astrocitos/efectos de los fármacos , Dióxido de Carbono/farmacología , Hidrógeno/farmacología , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Bicarbonatos/metabolismo , Señalización del Calcio , Exocitosis , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Ratas , Respiración , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/antagonistas & inhibidores , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/metabolismo
19.
Brain Res ; 1650: 178-183, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27616338

RESUMEN

Increased activity of the sympathetic nervous system has been highlighted as a key factor that contributes to the development and maintenance of arterial hypertension. However, the factors that precipitate sustained increases in sympathetic activity remain poorly understood. Resting tissue oxygen partial pressure (PtO2) in the brainstem of anesthetized spontaneously hypertensive rats (SHRs) has been shown to be lower than in normotensive rats despite normal levels of arterial PO2. A hypoxic environment in the brainstem has been postulated to activate astroglial signalling mechanisms in the rostral ventrolateral medulla (RVLM) which in turn increase the excitability of presympathetic neuronal networks. In this study, we assessed the expression of indirect markers of tissue hypoxia and astroglial cell activation in the RVLM of SHRs and age-matched normotensive Wistar rats. Immunohistochemical labelling for hypoxia-induced factor-1α (HIF-1α) and bound pimonidazole adducts revealed the presence of tissue hypoxia in the RVLM of SHRs. Double immunostaining showed co-localization of bound pimonidazole labelling in putative presympathetic C1 neurons and in astroglial cells. Quantification of glial fibrillary acidic protein (GFAP) immunofluorescence showed relatively higher number of astrocytes and increased GFAP mean grey value density, whilst semi-quantitative analysis of skeletonized GFAP-immunoreactive processes revealed greater % area covered by astrocytic processes in the RVLM of adult SHRs. In conclusion, the morphological findings of tissue hypoxia and astrogliosis within brainstem presympathetic neuronal networks in the SHR support previous observations, showing that low brainstem PtO2 and increased astroglial signalling in the RVLM play an important role in pathological sympathoexcitation associated with the development of arterial hypertension.


Asunto(s)
Gliosis/metabolismo , Hipoxia/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Presión Sanguínea/fisiología , Tronco Encefálico/metabolismo , Frecuencia Cardíaca , Hipertensión/fisiopatología , Masculino , Bulbo Raquídeo/fisiología , Neuronas/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Sistema Nervioso Simpático/fisiopatología
20.
Adv Exp Med Biol ; 903: 201-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27343098

RESUMEN

Astrocytes provide the structural and functional interface between the cerebral circulation and neuronal networks. They enwrap all intracerebral arterioles and capillaries, control the flux of nutrients as well as the ionic and metabolic environment of the neuropil. Astrocytes have the ability to adjust cerebral blood flow to maintain constant PO2 and PCO2 of the brain parenchyma. Release of ATP in the brainstem, presumably by local astrocytes, helps to maintain breathing and counteract hypoxia-induced depression of the respiratory network. Astrocytes also appear to be involved in mediating hypoxia-evoked changes in blood-brain barrier permeability, brain inflammation, and neuroprotection against ischaemic injury. Thus, astrocytes appear to play a fundamental role in supporting neuronal function not only in normal conditions but also in pathophysiological states when supply of oxygen to the brain is compromised.


Asunto(s)
Astrocitos/patología , Hipoxia Encefálica/patología , Animales , Barrera Hematoencefálica/metabolismo , Humanos , Inflamación/patología , Neuroprotección , Acoplamiento Neurovascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...