Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018905

RESUMEN

Diabetes is caused by the inability of electrically coupled, functionally heterogeneous ß-cells within the pancreatic islet to provide adequate insulin secretion. Functional networks have been used to represent synchronized oscillatory [Ca2+] dynamics and to study ß-cell subpopulations, which play an important role in driving islet function. The mechanism by which highly synchronized ß-cell subpopulations drive islet function is unclear. We used experimental and computational techniques to investigate the relationship between functional networks, structural (gap junction) networks, and intrinsic ß-cell dynamics in slow and fast oscillating islets. Highly synchronized subpopulations in the functional network were differentiated by intrinsic dynamics, including metabolic activity and KATP channel conductance, more than structural coupling. Consistent with this, intrinsic dynamics were more predictive of high synchronization in the islet functional network as compared to high levels of structural coupling. Finally, dysfunction of gap junctions, which can occur in diabetes, caused decreases in the efficiency and clustering of the functional network. These results indicate that intrinsic dynamics rather than structure drive connections in the functional network and highly synchronized subpopulations, but gap junctions are still essential for overall network efficiency. These findings deepen our interpretation of functional networks and the formation of functional subpopulations in dynamic tissues such as the islet.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Células Secretoras de Insulina/metabolismo , Uniones Comunicantes/metabolismo , Islotes Pancreáticos/metabolismo , Secreción de Insulina , Diabetes Mellitus/metabolismo
2.
PLoS Comput Biol ; 19(10): e1010508, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37797040

RESUMEN

Epilepsy is a serious neurological disorder characterised by a tendency to have recurrent, spontaneous, seizures. Classically, seizures are assumed to occur at random. However, recent research has uncovered underlying rhythms both in seizures and in key signatures of epilepsy-so-called interictal epileptiform activity-with timescales that vary from hours and days through to months. Understanding the physiological mechanisms that determine these rhythmic patterns of epileptiform discharges remains an open question. Many people with epilepsy identify precipitants of their seizures, the most common of which include stress, sleep deprivation and fatigue. To quantify the impact of these physiological factors, we analysed 24-hour EEG recordings from a cohort of 107 people with idiopathic generalized epilepsy. We found two subgroups with distinct distributions of epileptiform discharges: one with highest incidence during sleep and the other during day-time. We interrogated these data using a mathematical model that describes the transitions between background and epileptiform activity in large-scale brain networks. This model was extended to include a time-dependent forcing term, where the excitability of nodes within the network could be modulated by other factors. We calibrated this forcing term using independently-collected human cortisol (the primary stress-responsive hormone characterised by circadian and ultradian patterns of secretion) data and sleep-staged EEG from healthy human participants. We found that either the dynamics of cortisol or sleep stage transition, or a combination of both, could explain most of the observed distributions of epileptiform discharges. Our findings provide conceptual evidence for the existence of underlying physiological drivers of rhythms of epileptiform discharges. These findings should motivate future research to explore these mechanisms in carefully designed experiments using animal models or people with epilepsy.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Animales , Humanos , Hidrocortisona , Convulsiones , Electroencefalografía
3.
Math Biosci ; 365: 109085, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37802364

RESUMEN

Electrical bursting oscillations in the ß-cells of pancreatic islets have been a focus of investigation for more than fifty years. This has been aided by mathematical models, which are descendants of the pioneering Chay-Keizer model. This article describes the key biophysical and mathematical elements of this model, and then describes the path forward from there to the Integrated Oscillator Model (IOM). It is both a history and a deconstruction of the IOM that describes the various elements that have been added to the model over time, and the motivation for adding them. Finally, the article is a celebration of the 40th anniversary of the publication of the Chay-Keizer model.

4.
Biophys J ; 121(8): 1449-1464, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35300967

RESUMEN

ATP-sensitive K+ (K(ATP)) channels were first reported in the ß-cells of pancreatic islets in 1984, and it was soon established that they are the primary means by which the blood glucose level is transduced to cellular electrical activity and consequently insulin secretion. However, the role that the K(ATP) channels play in driving the bursting electrical activity of islet ß-cells, which drives pulsatile insulin secretion, remains unclear. One difficulty is that bursting is abolished when several different ion channel types are blocked pharmacologically or genetically, making it challenging to distinguish causation from correlation. Here, we demonstrate a means for determining whether activity-dependent oscillations in K(ATP) conductance play the primary role in driving electrical bursting in ß-cells. We use mathematical models to predict that if K(ATP) is the driver, then contrary to intuition, the mean, peak, and nadir levels of ATP/ADP should be invariant to changes in glucose within the concentration range that supports bursting. We test this in islets using Perceval-HR to image oscillations in ATP/ADP. We find that mean, peak, and nadir levels are indeed approximately invariant, supporting the hypothesis that oscillations in K(ATP) conductance are the main drivers of the slow bursting oscillations typically seen at stimulatory glucose levels in mouse islets. In conclusion, we provide, for the first time to our knowledge, causal evidence for the role of K(ATP) channels not only as the primary target for glucose regulation but also for their role in driving bursting electrical activity and pulsatile insulin secretion.


Asunto(s)
Señalización del Calcio , Islotes Pancreáticos , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Glucosa/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Potenciales de la Membrana/fisiología , Ratones
5.
Biophys J ; 121(5): 692-704, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131294

RESUMEN

Pulsatile insulin secretion by pancreatic beta cells is necessary for tight glucose control in the body. Glycolytic oscillations have been proposed as the mechanism for generating the electrical oscillations underlying pulsatile insulin secretion. The glycolytic enzyme 6-phosphofructokinase-1 (PFK) synthesizes fructose-1,6-bisphosphate (FBP) from fructose-6-phosphate. It has been proposed that the slow electrical and Ca2+ oscillations (periods of 3-5 min) observed in islets result from allosteric feedback activation of PFKM by FBP. Pancreatic beta cells express three PFK isozymes: PFKL, PFKM, and PFKP. A prior study of mice that were engineered to lack PFKM using a gene-trap strategy to delete Pfkm produced a mosaic reduction in global Pfkm expression, but the islets isolated from the mice still exhibited slow Ca2+ oscillations. However, these islets still expressed residual PFKM protein. Thus, to more fully test the hypothesis that beta cell PFKM is responsible for slow islet oscillations, we made a beta-cell-specific knockout mouse that completely lacked PFKM. While PFKM deletion resulted in subtle metabolic changes in vivo, islets that were isolated from these mice continued to exhibit slow oscillations in electrical activity, beta cell Ca2+ concentrations, and glycolysis, as measured using PKAR, an FBP reporter/biosensor. Furthermore, simulations obtained with a mathematical model of beta cell activity shows that slow oscillations can persist despite PFKM loss provided that one of the other PFK isoforms, such as PFKP, is present, even if its level of expression is unchanged. Thus, while we believe that PFKM may be the main regulator of slow oscillations in wild-type islets, PFKP can provide functional redundancy. Our model also suggests that PFKM likely dominates, in vivo, because it outcompetes PFKP with its higher FBP affinity and lower ATP affinity. We thus propose that isoform redundancy may rescue key physiological processes of the beta cell in the absence of certain critical genes.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Fosfofructoquinasa-1 , Animales , Calcio/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo
6.
Front Physiol ; 12: 781581, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925070

RESUMEN

Insulin is secreted in a pulsatile pattern, with important physiological ramifications. In pancreatic ß-cells, which are the cells that synthesize insulin, insulin exocytosis is elicited by pulses of elevated intracellular Ca2+ initiated by bursts of electrical activity. In parallel with these electrical and Ca2+ oscillations are oscillations in metabolism, and the periods of all of these oscillatory processes are similar. A key question that remains unresolved is whether the electrical oscillations are responsible for the metabolic oscillations via the effects of Ca2+, or whether the metabolic oscillations are responsible for the electrical oscillations due to the effects of ATP on ATP-sensitive ion channels? Mathematical modeling is a useful tool for addressing this and related questions as modeling can aid in the design of well-focused experiments that can test the predictions of particular models and subsequently be used to improve the models in an iterative fashion. In this article, we discuss a recent mathematical model, the Integrated Oscillator Model (IOM), that was the product of many years of development. We use the model to demonstrate that the relationship between calcium and metabolism in beta cells is symbiotic: in some contexts, the electrical oscillations drive the metabolic oscillations, while in other contexts it is the opposite. We provide new insights regarding these results and illustrate that what might at first appear to be contradictory data are actually compatible when viewed holistically with the IOM.

7.
Am J Physiol Endocrinol Metab ; 318(4): E554-E563, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32069073

RESUMEN

Insulin pulsatility is important to hepatic response in regulating blood glucose. Growing evidence suggests that insulin-secreting pancreatic ß-cells can adapt to chronic disruptions of pulsatility to rescue this physiologically important behavior. We determined the time scale for adaptation and examined potential ion channels underlying it. We induced the adaptation both by chronic application of the ATP-sensitive K+ [K(ATP)] channel blocker tolbutamide and by application of the depolarizing agent potassium chloride (KCl). Acute application of tolbutamide without pretreatment results in elevated Ca2+ as measured by fura-2AM and the loss of endogenous pulsatility. We show that after chronic exposure to tolbutamide (12-24 h), Ca2+ oscillations occur with subsequent acute tolbutamide application. The same experiment was conducted with potassium chloride (KCl) to directly depolarize the ß-cells. Once again, following chronic exposure to the cell stimulator, the islets produced Ca2+ oscillations when subsequently exposed to tolbutamide. These experiments suggest that it is the chronic stimulation, and not tolbutamide desensitization, that is responsible for the adaptation that rescues oscillatory ß-cell activity. This compensatory response also causes islet glucose sensitivity to shift rightward following chronic tolbutamide treatment. Mathematical modeling shows that a small increase in the number of K(ATP) channels in the membrane is one adaptation mechanism that is compatible with the data. To examine other compensatory mechanisms, pharmacological studies provide support that Kir2.1 and TEA-sensitive channels play some role. Overall, this investigation demonstrates ß-cell adaptability to overstimulation, which is likely an important mechanism for maintaining glucose homeostasis in the face of chronic stimulation.


Asunto(s)
Adaptación Fisiológica , Señalización del Calcio , Islotes Pancreáticos/metabolismo , Canales de Potasio/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Hiperinsulinismo Congénito/metabolismo , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Canales KATP/metabolismo , Masculino , Ratones , Modelos Teóricos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Cloruro de Potasio , Estimulación Química , Tolbutamida/farmacología
8.
J Theor Biol ; 454: 310-319, 2018 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-29935201

RESUMEN

Insulin-secreting ß-cells of pancreatic islets of Langerhans produce bursts of electrical impulses, resulting in intracellular Ca2+ oscillations and pulsatile insulin secretion. The mechanism for this bursting activity has been the focus of mathematical modeling for more than three decades, and as new data are acquired old models are modified and new models are developed. Comprehensive models must now account for the various modes of bursting observed in islet ß-cells, which include fast bursting, slow bursting, and compound bursting. One such model is the Integrated Oscillator Model (IOM), in which ß-cell electrical activity, intracellular Ca2+, and glucose metabolism interact via numerous feedforward and feedback pathways. These interactions can produce metabolic oscillations with a sawtooth time course or a pulsatile time course, reflecting very different oscillation mechanisms. In this report, we determine conditions favorable to one form of oscillations or the other, and examine the transitions between modes of bursting and the relationship of the transitions to the patterns of metabolic oscillations. Importantly, this work clarifies what can be expected in experimental measurements of ß-cell oscillatory activity, and suggests pathways through which oscillations of one type can be converted to oscillations of another type.


Asunto(s)
Señalización del Calcio/fisiología , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Modelos Teóricos , Adenosina Trifosfato/metabolismo , Animales , Relojes Biológicos/fisiología , Calcio/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Células Cultivadas , Humanos , Insulina/metabolismo , Modelos Biológicos , Flujo Pulsátil , Vías Secretoras/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-28226410

RESUMEN

Cortical spreading depression, a depolarization wave originating in the visual cortex and traveling towards the frontal lobe, is commonly accepted as a correlate of migraine visual aura. As of today, little is known about the mechanisms that can trigger or stop such phenomenon. However, the complex and highly individual characteristics of the brain cortex suggest that the geometry might have a significant impact in supporting or contrasting the propagation of cortical spreading depression. Accurate patient-specific computational models are fundamental to cope with the high variability in cortical geometries among individuals, but also with the conduction anisotropy induced in a given cortex by the complex neuronal organisation in the grey matter. In this paper, we integrate a distributed model for extracellular potassium concentration with patient-specific diffusivity tensors derived locally from diffusion tensor imaging data.


Asunto(s)
Depresión de Propagación Cortical , Imagen de Difusión Tensora , Modelación Específica para el Paciente , Corteza Visual/fisiología , Humanos , Corteza Visual/diagnóstico por imagen
10.
Epidemics ; 19: 1-12, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28007549

RESUMEN

Studies into the impact of vaccination against the varicella zoster virus (VZV) have increasingly focused on herpes zoster (HZ), which is believed to be increasing in vaccinated populations with decreasing infection pressure. This idea can be traced back to Hope-Simpson's hypothesis, in which a person's immune status determines the likelihood that he/she will develop HZ. Immunity decreases over time, and can be boosted by contact with a person experiencing varicella (exogenous boosting) or by a reactivation attempt of the virus (endogenous boosting). Here we use transmission models to estimate age-specific rates of reactivation and immune boosting, exogenous as well as endogenous, using zoster incidence data from the Netherlands (2002-2011, n=7026). The boosting and reactivation rates are estimated with splines, enabling these quantities to be optimally informed by the data. The analyses show that models with high levels of exogenous boosting and estimated or zero endogenous boosting, constant rate of loss of immunity, and reactivation rate increasing with age (to more than 5% per year in the elderly) give the best fit to the data. Estimates of the rates of immune boosting and reactivation are strongly correlated. This has important implications as these parameters determine the fraction of the population with waned immunity. We conclude that independent evidence on rates of immune boosting and reactivation in persons with waned immunity are needed to robustly predict the impact of varicella vaccination on the incidence of HZ.


Asunto(s)
Herpesvirus Humano 3/inmunología , Vacunación/estadística & datos numéricos , Infección por el Virus de la Varicela-Zóster/epidemiología , Infección por el Virus de la Varicela-Zóster/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Incidencia , Lactante , Masculino , Persona de Mediana Edad , Países Bajos , Prevalencia , Infección por el Virus de la Varicela-Zóster/prevención & control , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA