Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37446215

RESUMEN

Injuries and diseases of the skin require accurate treatment using nontoxic and noninvasive biomaterials, which aim to mimic the natural structures of the body. There is a strong need to develop biodevices capable of accommodating nutrients and bioactive molecules and generating the process of vascularization. Electrospinning is a robust technique, as it can form fibrous structures for tissue engineering and wound dressings. The best way of forming such meshes for wound healing is to choose two polymers that complement each other regarding their properties. On the one hand, PVA is a water-soluble synthetic polymer widely used for the preparation of hydrogels in the field of biomedicine owing to its biocompatibility, water solubility, nontoxicity, and considerable mechanical properties. PVA is easy to subject to electrospinning and can offer strong mechanical stability of the mesh, but it is necessary to improve its biological properties. On the other hand, CS has good biological properties, including biodegradability, nontoxicity, biocompatibility, and antimicrobial properties. Still, it is harder to electrospin and does not possess as good mechanical properties as PVA. As these structures also allow the incorporation of bioactive agents due to their high surface-area-to-volume ratio, the interesting point was to incorporate usnic acid into the structure as it is a natural and suitable alternative agent for burn wounds treatment which avoids an improper or overuse of antibiotics and other invasive biomolecules. Thus, we report the fabrication of an electrospun nanofibrous mesh based on PVA, chitosan, and usnic acid with applications in wound healing. The obtained nanofibers mesh was physicochemically characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). In vitro biological assays were performed to evaluate the antimicrobial properties of the samples using the MIC (minimum inhibitory concentration) assay and evaluating the influence of fabricated meshes on the Staphylococcus aureus biofilm development, as well as their biocompatibility (demonstrated by fluorescence microscopy results, an XTT assay, and a glutathione (GSH) assay).


Asunto(s)
Quitosano , Nanofibras , Quitosano/química , Nanofibras/química , Espectroscopía Infrarroja por Transformada de Fourier , Cicatrización de Heridas , Antibacterianos/química , Agua/química , Alcohol Polivinílico/química
2.
Plants (Basel) ; 11(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956481

RESUMEN

Pseudomonas aeruginosa is a non-fermentative Gram-negative opportunistic pathogen, frequently encountered in difficult-to-treat hospital-acquired infections and also wastewaters. The natural resistance of this pathogen, together with the frequent occurrence of multidrug-resistant strains, make current antibiotic therapy inefficient in treating P. aeruginosa infections. Antibiotic therapy creates a huge pressure to select resistant strains in clinical settings but also in the environment, since high amounts of antibiotics are released in waters and soil. Essential oils (EOs) and plant-derived compounds are efficient, ecologic, and sustainable alternatives in the management of various diseases, including infections. In this study, we evaluated the antibacterial effects of four commercial essential oils, namely, tea tree, thyme, sage, and eucalyptus, on 36 P. aeruginosa strains isolated from hospital infections and wastewaters. Bacterial strains were characterized in terms of virulence and antimicrobial resistance. The results show that most strains expressed soluble pore toxin virulence factors such as lecithinase (89-100%) and lipase (72-86%). All P. aeruginosa strains were positive for alginate encoding gene and 94.44% for protease IV; most of the strains were exotoxin producers (i.e., 80.56% for the ExoS gene, 77.78% for the ExoT gene, while the ExoU gene was present in 38.98% of the strains). Phospholipase-encoding genes (plc) were identified in 91.67/86.11% of the cases (plcH/plcN genes). A high antibiotic resistance level was identified, most of the strains being resistant to cabapenems and cephalosporins. Cabapenem resistance was higher in hospital and hospital wastewater strains (55.56-100%) as compared to those in urban wastewater. The most frequently encountered encoding genes were for extended spectrum ß-lactamases (ESBLs), namely, blaCTX-M (83.33% of the strains), blaSHV (80.56%), blaGES (52.78%), and blaVEB (13.89%), followed by carbapenemase-encoding genes (blaVIM, 8.33%). Statistical comparison of the EOs' antimicrobial results showed that thyme gave the lowest minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MBEC) in P. aeruginosa-resistant isolates, making this EO a competitive candidate for the development of efficient and ecologic antimicrobial alternatives.

3.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884908

RESUMEN

Despite the technological progress of the last decade, dental caries is still the most frequent oral health threat in children and adults alike. Such a condition has multiple triggers and is caused mainly by enamel degradation under the acidic attack of microbial cells, which compose the biofilm of the dental plaque. The biofilm of the dental plaque is a multispecific microbial consortium that periodically develops on mammalian teeth. It can be partially removed through mechanical forces by individual brushing or in specialized oral care facilities. Inhibition of microbial attachment and biofilm formation, as well as methods to strengthen dental enamel to microbial attack, represent the key factors in caries prevention. The purpose of this study was to elaborate a cold plasma-based method in order to modulate microbial attachment and biofilm formation and to improve the retention of fluoride (F-) in an enamel-like hydroxyapatite (HAP) model sample. Our results showed improved F retention in the HAP model, which correlated with an increased antimicrobial and antibiofilm effect. The obtained cold plasma with a dual effect exhibited through biofilm modulation and enamel strengthening through fluoridation is intended for dental application, such as preventing and treating dental caries and enamel deterioration.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Durapatita/química , Fluoruros/farmacología , Gases em Plasma/farmacología , Presión Atmosférica , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Fluoruros/química , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Gases em Plasma/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
4.
BMC Vet Res ; 17(1): 52, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33499841

RESUMEN

BACKGROUND: The present study aims the characterization of antibiotic resistance phenotypes and encoding genes in bacterial strains isolated from some Romanian aquatic fishery lowland salted lakes. MATERIAL/METHODS: This study was conducted on 44 bacterial strains, mainly belonging to species used as microbiological indicators of fecal pollution isolated from four natural fishery lakes. All strains were tested for their antibiotic susceptibility by disk diffusion method. Simplex and multiplex PCR were performed to identify the ß-lactams antibiotic resistance genes (blaNMD, blaOXA-48, blaVIM, blaIMP, blaCTX-M, blaTEM), sulfonamides (Sul1, Sul2), tetracyclines (TetA, TetB, TetC, TetD, TetM), aminoglycosides (aac3Ia), vancomycin (VanA, VanB, VanC), macrolides (ermA, ermB, ermC) as well as the plasmid-mediated quinolone resistance (PMQR) markers (QnrA, QnrB, QnrS), and class 1 integrons (Int1, drfA1-aadA1). RESULTS: The Enterococcus spp. isolates exhibited phenotypic resistance to vancomycin (35 %) and macrolides (erythromycin) (75 %); from the vancomycin - resistant strains, 5 % harboured VanA (E. faecalis), while the erythromycin resistant isolates were positive for the ermA gene (E. faecalis - 10 %, E. faecium - 5 %). The Gram- negative rods (GNR) exhibited a high level of resistance to ß-lactams: cefuroxime (63 %), cefazolin (42 %), ceftriaxone (8 %), ceftazidime and aztreonam (4 % each). The genetic determinants for beta-lactam resistance were represented by blaCTX-M-like (33 %), blaNDM-like and blaIMP-like (8.33 %) genes. The resistance to non-ß-lactam antibiotics was ascertained to the following genes: quinolones (QnrS - 4.16 %); sulfonamides (Sul1-75 %, Sul2-4.16 %); aminoglycosides (aac3Ia - 4.16 %); tetracyclines (tetA - 25 %, tetC - 15 %). The integrase gene was found in more than 50 % of the studied strains (58.33 %). CONCLUSIONS: The cultivable aquatic microbiota from fishery lakes is dominated by enterococci and Enterobacterales strains. The GNR strains exhibited high levels of ß-lactam resistance mediated by extended spectrum beta-lactamases and metallo-ß-lactamases. The Enterococcus sp. isolates were highly resistant to macrolides and vancomycin. The high level and diversity of resistance markers, correlated with a high frequency of integrons is suggesting that this environment could act as an important reservoir of antibiotic resistance genes with a great probability to be horizontally transmitted to other associated species from the aquatic sediments microbiota, raising the potential zoonotic risk for fish consumers.


Asunto(s)
Farmacorresistencia Bacteriana , Explotaciones Pesqueras , Lagos/microbiología , Microbiota/efectos de los fármacos , Antibacterianos/farmacología , Enterococcus/efectos de los fármacos , Enterococcus/genética , Enterococcus/aislamiento & purificación , Genes Bacterianos/genética , Pruebas de Sensibilidad Microbiana , Microbiota/genética , Reacción en Cadena de la Polimerasa Multiplex , Rumanía/epidemiología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...