Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1367450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606105

RESUMEN

The DNAJB1-PRKACA fusion transcript was identified as the oncogenic driver of tumor pathogenesis in fibrolamellar hepatocellular carcinoma (FL-HCC), also known as fibrolamellar carcinoma (FLC), as well as in other tumor entities, thus representing a broad target for novel treatment in multiple cancer entities. FL-HCC is a rare primary liver tumor with a 5-year survival rate of only 45%, which typically affects young patients with no underlying primary liver disease. Surgical resection is the only curative treatment option if no metastases are present at diagnosis. There is no standard of care for systemic therapy. Peptide-based vaccines represent a low side-effect approach relying on specific immune recognition of tumor-associated human leucocyte antigen (HLA) presented peptides. The induction (priming) of tumor-specific T-cell responses against neoepitopes derived from gene fusion transcripts by peptide-vaccination combined with expansion of the immune response and optimization of immune function within the tumor microenvironment achieved by immune-checkpoint-inhibition (ICI) has the potential to improve response rates and durability of responses in malignant diseases. The phase I clinical trial FusionVAC22_01 will enroll patients with FL-HCC or other cancer entities carrying the DNAJB1-PRKACA fusion transcript that are locally advanced or metastatic. Two doses of the DNAJB1-PRKACA fusion-based neoepitope vaccine Fusion-VAC-XS15 will be applied subcutaneously (s.c.) with a 4-week interval in combination with the anti-programmed cell death-ligand 1 (PD-L1) antibody atezolizumab starting at day 15 after the first vaccination. Anti-PD-L1 will be applied every 4 weeks until end of the 54-week treatment phase or until disease progression or other reason for study termination. Thereafter, patients will enter a 6 months follow-up period. The clinical trial reported here was approved by the Ethics Committee II of the University of Heidelberg (Medical faculty of Mannheim) and the Paul-Ehrlich-Institute (P-00540). Clinical trial results will be published in peer-reviewed journals. Trial registration numbers: EU CT Number: 2022-502869-17-01 and ClinicalTrials.gov Registry (NCT05937295).

2.
Int J Infect Dis ; 139: 69-77, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016500

RESUMEN

OBJECTIVES: T cell immunity is key for the control of viral infections including SARS-CoV-2, in particular with regard to immune memory and protection against arising genetic variants. METHODS: We recently evaluated a peptide-based SARS-CoV-2 T cell activator termed CoVac-1 in a first-in-human trial in healthy adults. Here, we report on long-term safety and efficacy data of CoVac-1 until month 12. RESULTS: CoVac-1 is well tolerated without long-term immune-related side effects and induces long-lasting anti-viral T cell responses in 100% of study participants, with potent expandability of clusters of differentiation (CD4+) and CD8+ T cells targeting multiple different CoVac-1 T cell epitopes. T cell responses were associated with stronger injection site reaction. Beyond induction of T cell immunity, 89% of subjects developed CoVac-1-specific immunoglobulin G antibodies which associated with the intensity of the T cell response, indicating that CoVac-1-specific CD4+ T cells support the induction of B-cell responses. Vaccination with approved COVID-19 vaccines boosted CoVac-1-specific T cell responses. Overall, a low SARS-CoV-2 infection rate (8.3%) was observed. CONCLUSION: Together, a single application of CoVac-1 elicits long-lived and broad SARS-CoV-2-specific T cell immunity, which further supports the current evaluation of our T cell activator in patients with congenital or acquired B-cell defects.


Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Linfocitos T CD8-positivos , SARS-CoV-2 , Péptidos , Anticuerpos Antivirales
3.
Blood Cancer Discov ; 4(6): 468-489, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847741

RESUMEN

Therapy-resistant leukemia stem and progenitor cells (LSC) are a main cause of acute myeloid leukemia (AML) relapse. LSC-targeting therapies may thus improve outcome of patients with AML. Here we demonstrate that LSCs present HLA-restricted antigens that induce T-cell responses allowing for immune surveillance of AML. Using a mass spectrometry-based immunopeptidomics approach, we characterized the antigenic landscape of patient LSCs and identified AML- and AML/LSC-associated HLA-presented antigens absent from normal tissues comprising nonmutated peptides, cryptic neoepitopes, and neoepitopes of common AML driver mutations of NPM1 and IDH2. Functional relevance of shared AML/LSC antigens is illustrated by presence of their cognizant memory T cells in patients. Antigen-specific T-cell recognition and HLA class II immunopeptidome diversity correlated with clinical outcome. Together, these antigens shared among AML and LSCs represent prime targets for T cell-based therapies with potential of eliminating residual LSCs in patients with AML. SIGNIFICANCE: The elimination of therapy-resistant leukemia stem and progenitor cells (LSC) remains a major challenge in the treatment of AML. This study identifies and functionally validates LSC-associated HLA class I and HLA class II-presented antigens, paving the way to the development of LSC-directed T cell-based immunotherapeutic approaches for patients with AML. See related commentary by Ritz, p. 430 . This article is featured in Selected Articles from This Issue, p. 419.


Asunto(s)
Antígenos HLA , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Péptidos , Células Madre
4.
Nat Commun ; 14(1): 5032, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596280

RESUMEN

T-cell immunity is central for control of COVID-19, particularly in patients incapable of mounting antibody responses. CoVac-1 is a peptide-based T-cell activator composed of SARS-CoV-2 epitopes with documented favorable safety profile and efficacy in terms of SARS-CoV-2-specific T-cell response. We here report a Phase I/II open-label trial (NCT04954469) in 54 patients with congenital or acquired B-cell deficiency receiving one subcutaneous CoVac-1 dose. Immunogenicity in terms of CoVac-1-induced T-cell responses and safety are the primary and secondary endpoints, respectively. No serious or grade 4 CoVac-1-related adverse events have been observed. Expected local granuloma formation has been observed in 94% of study subjects, whereas systemic reactogenicity has been mild or absent. SARS-CoV-2-specific T-cell responses have been induced in 86% of patients and are directed to multiple CoVac-1 peptides, not affected by any current Omicron variants and mediated by multifunctional T-helper 1 CD4+ T cells. CoVac-1-induced T-cell responses have exceeded those directed to the spike protein after mRNA-based vaccination of B-cell deficient patients and immunocompetent COVID-19 convalescents with and without seroconversion. Overall, our data show that CoVac-1 induces broad and potent T-cell responses in patients with B-cell/antibody deficiency with a favorable safety profile, which warrants advancement to pivotal Phase III safety and efficacy evaluation. ClinicalTrials.gov identifier NCT04954469.


Asunto(s)
Agammaglobulinemia , COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T , Péptidos/uso terapéutico
5.
Viruses ; 15(3)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36992410

RESUMEN

With the routine use of effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, the number of life-threatening coronavirus disease 2019 (COVID-19) courses have largely been reduced. However, multiple COVID-19 convalescents, even after asymptomatic to moderate disease, suffer from post-COVID syndrome, with relevant limitations in daily life. The pathophysiologic mechanisms of post-COVID syndrome are still elusive, with dysregulation of the immune system suggested as a central mechanism. Here, we assessed COVID-19 post-infectious symptoms (5-6 months after PCR-confirmed acute infection) together with the humoral immune response against SARS-CoV-2 in non-hospitalized COVID-19 convalescents, early (5-6 weeks) and late (5-6 months) after their first positive SARS-CoV-2 PCR result. Convalescents reporting several post-infectious symptoms (>3) showed higher anti-spike and anti-nucleocapsid antibody levels 5-6 weeks after PCR-confirmed infection with the latter remained increased 5-6 months after positive PCR. Likewise, a higher post-infectious symptom score was associated with increased antibody levels. Of note, convalescents displaying neuro-psychiatric symptoms such as restlessness, palpitations, irritability, and headache, as well as general symptoms such as fatigue/reduced power had higher SARS-CoV-2-specific antibody levels compared with asymptomatic cases. The increased humoral immune response in convalescents with post-COVID syndrome might be useful for the detection of individuals with an increased risk for post-COVID syndrome.


Asunto(s)
COVID-19 , Trastornos Mentales , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Inmunidad Humoral
6.
Clin Infect Dis ; 76(3): e240-e249, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35717657

RESUMEN

BACKGROUND: The rapid emergence of the Omicron variant and its large number of mutations led to its classification as a variant of concern (VOC) by the World Health Organization. Subsequently, Omicron evolved into distinct sublineages (eg, BA.1 and BA.2), which currently represent the majority of global infections. Initial studies of the neutralizing response toward BA.1 in convalescent and vaccinated individuals showed a substantial reduction. METHODS: We assessed antibody (immunoglobulin G [IgG]) binding, ACE2 (angiotensin-converting enzyme 2) binding inhibition, and IgG binding dynamics for the Omicron BA.1 and BA.2 variants compared to a panel of VOCs/variants of interest, in a large cohort (N = 352) of convalescent, vaccinated, and infected and subsequently vaccinated individuals. RESULTS: While Omicron was capable of efficiently binding to ACE2, antibodies elicited by infection or immunization showed reduced binding capacities and ACE2 binding inhibition compared to wild type. Whereas BA.1 exhibited less IgG binding compared to BA.2, BA.2 showed reduced inhibition of ACE2 binding. Among vaccinated samples, antibody binding to Omicron only improved after administration of a third dose. CONCLUSIONS: Omicron BA.1 and BA.2 can still efficiently bind to ACE2, while vaccine/infection-derived antibodies can bind to Omicron. The extent of the mutations within both variants prevents a strong inhibitory binding response. As a result, both Omicron variants are able to evade control by preexisting antibodies.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Inmunoglobulina G , Humanos , Inmunización , Mutación , Complicaciones Posoperatorias , Anticuerpos Antivirales , Anticuerpos Neutralizantes
7.
Sci Immunol ; 7(78): eadd3899, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36318037

RESUMEN

Several COVID-19 vaccines are approved to prevent severe disease outcome after SARS-CoV-2 infection. Whereas induction and functionality of antiviral antibody response are largely studied, the induction of T cells upon vaccination with the different approved COVID-19 vaccines is less studied. Here, we report on T cell immunity 4 weeks and 6 months after different vaccination regimens and 4 weeks after an additional booster vaccination in comparison with SARS-CoV-2 T cell responses in convalescents and prepandemic donors using interferon-gamma ELISpot assays and flow cytometry. Increased T cell responses and cross-recognition of B.1.1.529 Omicron variant-specific mutations were observed ex vivo in mRNA- and heterologous-vaccinated donors compared with vector-vaccinated donors. Nevertheless, potent expandability of T cells targeting the spike protein was observed for all vaccination regimens, with frequency, diversity, and the ability to produce several cytokines of vaccine-induced T cell responses comparable with those in convalescent donors. T cell responses for all vaccinated donors significantly exceeded preexisting cross-reactive T cell responses in prepandemic donors. Booster vaccination led to a significant increase in anti-spike IgG responses, which showed a marked decline 6 months after complete vaccination. In contrast, T cell responses remained stable over time after complete vaccination with no significant effect of booster vaccination on T cell responses and cross-recognition of Omicron BA.1 and BA.2 mutations. This suggested that booster vaccination is of particular relevance for the amelioration of antibody response. Together, our work shows that different vaccination regimens induce broad and long-lasting spike-specific CD4+ and CD8+ T cell immunity to SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Anticuerpos Antivirales
8.
Nat Commun ; 13(1): 6401, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302754

RESUMEN

The DNAJB1-PRKACA fusion transcript is the oncogenic driver in fibrolamellar hepatocellular carcinoma, a lethal disease lacking specific therapies. This study reports on the identification, characterization, and immunotherapeutic application of HLA-presented neoantigens specific for the DNAJB1-PRKACA fusion transcript in fibrolamellar hepatocellular carcinoma. DNAJB1-PRKACA-derived HLA class I and HLA class II ligands induce multifunctional cytotoxic CD8+ and T-helper 1 CD4+ T cells, and their cellular processing and presentation in DNAJB1-PRKACA expressing tumor cells is demonstrated by mass spectrometry-based immunopeptidome analysis. Single-cell RNA sequencing further identifies multiple T cell receptors from DNAJB1-PRKACA-specific T cells. Vaccination of a fibrolamellar hepatocellular carcinoma patient, suffering from recurrent short interval disease relapses, with DNAJB1-PRKACA-derived peptides under continued Poly (ADP-ribose) polymerase inhibitor therapy induces multifunctional CD4+ T cells, with an activated T-helper 1 phenotype and high T cell receptor clonality. Vaccine-induced DNAJB1-PRKACA-specific T cell responses persist over time and, in contrast to various previous treatments, are accompanied by durable relapse free survival of the patient for more than 21 months post vaccination. Our preclinical and clinical findings identify the DNAJB1-PRKACA protein as source for immunogenic neoepitopes and corresponding T cell receptors and provide efficacy in a single-patient study of T cell-based immunotherapy specifically targeting this oncogenic fusion.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia/genética , Proteínas de Fusión Oncogénica/genética , Inmunoterapia , Péptidos/genética , Proteínas del Choque Térmico HSP40/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico
9.
Cancers (Basel) ; 14(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36230581

RESUMEN

Chronic lymphocytic leukemia (CLL) is characterized by recurrent relapses and resistance to treatment, even with novel therapeutic approaches. Despite being considered as a disease with low mutational burden and thus poor immunogenic, CLL seems to retain the ability of eliciting specific T cell activation. Accordingly, we recently found non-mutated tumor-associated antigens to play a central role in CLL immunosurveillance. Here, we investigated the association of total and CLL-exclusive HLA class I and HLA class II peptide presentation in the mass spectrometry-defined immunopeptidome of leukemic cells with clinical features and disease outcome of 57 CLL patients. Patients whose CLL cells present a more diverse immunopeptidome experienced fewer relapses. During the follow-up phase of up to 10 years, patients with an HLA class I-restricted presentation of high numbers of total and CLL-exclusive peptides on their malignant cells showed a more favorable disease course with a prolonged progression-free survival (PFS). Overall, our results suggest the existence of an efficient T cell-based immunosurveillance mediated by CLL-associated tumor antigens, supporting ongoing efforts in developing T cell-based immunotherapeutic strategies for CLL.

10.
Int J Infect Dis ; 120: 187-195, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35429640

RESUMEN

OBJECTIVES: Besides SARS-CoV-2-directed humoral immune responses, T cell responses are indispensable for effective antiviral immunity. Recent data have shown a correlation between COVID-19 symptoms and humoral immune response, but so far, little is known about the association of SARS-CoV-2-directed T cell responses and disease severity. Herein, we evaluated the prevalence of different clinical COVID-19 symptoms in relation to SARS-CoV-2-directed humoral and cellular immune responses. METHODS: The severity of eight different symptoms during acute infection were assessed using questionnaires from 193 convalescent individuals and were evaluated in relation to SARS-CoV-2 antibody levels and intensity of SARS-CoV-2-specific T cell responses 2-8 weeks after positive polymerase chain reaction. RESULTS: Although increased IgG serum levels could be associated with severity of most symptoms, no difference in T cell response intensity between different symptom severities was observed for the majority of COVID-19 symptoms. However, when analyzing loss of smell or taste and cough, awareness of more severe symptoms was associated with reduced T cell response intensities. CONCLUSIONS: These data suggest that rapid virus clearance mediated by SARS-CoV-2-specific T cells prevents severe symptoms of COVID-19.


Asunto(s)
COVID-19 , Infecciones , Anticuerpos Antivirales , Humanos , Inmunidad Celular , Inmunidad Humoral , Prevalencia , SARS-CoV-2
11.
Mol Neurobiol ; 59(1): 495-522, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34716557

RESUMEN

Spinocerebellar ataxia type 3 is the most common autosomal dominant inherited ataxia worldwide, caused by a CAG repeat expansion in the Ataxin-3 gene resulting in a polyglutamine (polyQ)-expansion in the corresponding protein. The disease is characterized by neuropathological, phenotypical, and specific transcriptional changes in affected brain regions. So far, there is no mouse model available representing all the different aspects of the disease, yet highly needed for a better understanding of the disease pathomechanisms. Here, we characterized a novel Ataxin-3 knock-in mouse model, expressing a heterozygous or homozygous expansion of 304 CAACAGs in the murine Ataxin-3 locus using biochemical, behavioral, and transcriptomic approaches. We compared neuropathological, and behavioral features of the new knock-in model with the in SCA3 research mostly used YAC84Q mouse model. Further, we compared transcriptional changes found in cerebellar samples of the SCA3 knock-in mice and post-mortem human SCA3 patients. The novel knock-in mouse is characterized by the expression of a polyQ-expansion in the murine Ataxin-3 protein, leading to aggregate formation, especially in brain regions known to be vulnerable in SCA3 patients, and impairment of Purkinje cells. Along these neuropathological changes, the mice showed a reduction in body weight accompanied by gait and balance instability. Transcriptomic analysis of cerebellar tissue revealed age-dependent differential expression, enriched for genes attributed to myelinating oligodendrocytes. Comparing these changes with those found in cerebellar tissue of SCA3 patients, we discovered an overlap of differentially expressed genes pointing towards similar gene expression perturbances in several genes linked to myelin sheaths and myelinating oligodendrocytes.


Asunto(s)
Ataxina-3/genética , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Machado-Joseph/genética , Oligodendroglía/metabolismo , Fenotipo , Animales , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Ratones , Ratones Transgénicos , Células de Purkinje/metabolismo
12.
Nature ; 601(7894): 617-622, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34814158

RESUMEN

T cell immunity is central for the control of viral infections. CoVac-1 is a peptide-based vaccine candidate, composed of SARS-CoV-2 T cell epitopes derived from various viral proteins1,2, combined with the Toll-like receptor 1/2 agonist XS15 emulsified in Montanide ISA51 VG, aiming to induce profound SARS-CoV-2 T cell immunity to combat COVID-19. Here we conducted a phase I open-label trial, recruiting 36 participants aged 18-80 years, who received a single subcutaneous CoVac-1 vaccination. The primary end point was safety analysed until day 56. Immunogenicity in terms of CoVac-1-induced T cell response was analysed as the main secondary end point until day 28 and in the follow-up until month 3. No serious adverse events and no grade 4 adverse events were observed. Expected local granuloma formation was observed in all study participants, whereas systemic reactogenicity was absent or mild. SARS-CoV-2-specific T cell responses targeting multiple vaccine peptides were induced in all study participants, mediated by multifunctional T helper 1 CD4+ and CD8+ T cells. CoVac-1-induced IFNγ T cell responses persisted in the follow-up analyses and surpassed those detected after SARS-CoV-2 infection as well as after vaccination with approved vaccines. Furthermore, vaccine-induced T cell responses were unaffected by current SARS-CoV-2 variants of concern. Together, CoVac-1 showed a favourable safety profile and induced broad, potent and variant of concern-independent T cell responses, supporting the presently ongoing evaluation in a phase II trial for patients with B cell or antibody deficiency.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunas de Subunidad/inmunología , Administración Cutánea , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos T CD8-positivos/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Ensayos Clínicos Fase II como Asunto , Femenino , Granuloma/inmunología , Humanos , Inmunogenicidad Vacunal , Interferón gamma/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Adulto Joven
13.
Clin Transl Immunology ; 10(9): e1340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484739

RESUMEN

OBJECTIVES: T cells have an essential role in the antiviral defence. Public T-cell receptor (TCR) clonotypes are expanded in a substantial proportion of COVID-19 patients. We set out to exploit their potential use as read-out for COVID-19 T-cell immune responses. METHODS: We searched for COVID-19-associated T-cell clones with public TCRs, as defined by identical complementarity-determining region 3 (CDR3) beta chain amino acid sequence that can be reproducibly detected in the blood of COVID-19 patients. Of the different clonotype identification algorithms used in this study, deep sequencing of brain tissue of five patients with fatal COVID-19 delivered 68 TCR clonotypes with superior representation across 140 immune repertoires of unrelated COVID-19 patients. RESULTS: Mining of immune repertoires from subjects not previously exposed to the virus showed that these clonotypes can be found in almost 20% of pre-pandemic immune repertoires of healthy subjects, with lower representation in repertoires from risk groups like individuals above the age of 60 years or patients with cancer. CONCLUSION: Together, our data show that at least a proportion of the SARS-CoV-2 T-cell response is mediated by public TCRs that are present in repertoires of unexposed individuals. The lower representation of these clones in repertoires of risk groups or failure to expand such clones may contribute to more unfavorable clinical COVID-19 courses.

14.
Internist (Berl) ; 62(9): 991-997, 2021 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-34398265

RESUMEN

BACKGROUND: Immunotherapies have gained increasing importance in the treatment of cancer in recent years. This also includes tumor vaccines, which are used therapeutically to direct the immune system specifically against tumor cells. OBJECTIVES: Different strategies of tumor vaccination, their current state of development, the optimal timing and possible combinations of cancer vaccines in the treatment of cancer are discussed. METHODS: Scientific publications on various tumor vaccination strategies based on ongoing studies that are listed on clinicaltrials.gov are summarized. CONCLUSIONS: For effective tumor vaccination, the selection of suitable tumor antigens present on the cell surface via human leukocyte antigen (HLA) molecules is essential. Suitable antigens should be present exclusively on tumor cells and able to induce a specific anti-tumor immune response, i.e. activate cytotoxic and T helper cells. For this purpose, neoepitopes derived from tumor-specific mutations or tumor-associated antigens (TAAs), which are present exclusively in tumor tissue due to altered gene expression or processing, can be used. For the application of the antigens, various strategies combined with suitable adjuvants are available, including peptide vaccines, DNA- or RNA-based vaccines, approaches with dendritic cells or whole tumor cell vaccines. Currently, numerous vaccination approaches as well as combination protocols are being evaluated in clinical trials with the aim to establish specific and low side effect immunotherapies to combat malignancies and enable long-term protection from disease recurrence via the induction of long-lasting antitumor immune responses.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Antígenos de Neoplasias , Humanos , Inmunoterapia , Neoplasias/terapia , Vacunación
15.
Front Immunol ; 12: 705974, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305947

RESUMEN

Antigen-specific immunotherapies, in particular peptide vaccines, depend on the recognition of naturally presented antigens derived from mutated and unmutated gene products on human leukocyte antigens, and represent a promising low-side-effect concept for cancer treatment. So far, the broad application of peptide vaccines in cancer patients is hampered by challenges of time- and cost-intensive personalized vaccine design, and the lack of neoepitopes from tumor-specific mutations, especially in low-mutational burden malignancies. In this study, we developed an immunopeptidome-guided workflow for the design of tumor-associated off-the-shelf peptide warehouses for broadly applicable personalized therapeutics. Comparative mass spectrometry-based immunopeptidome analyses of primary chronic lymphocytic leukemia (CLL) samples, as representative example of low-mutational burden tumor entities, and a dataset of benign tissue samples enabled the identification of high-frequent non-mutated CLL-associated antigens. These antigens were further shown to be recognized by pre-existing and de novo induced T cells in CLL patients and healthy volunteers, and were evaluated as pre-manufactured warehouse for the construction of personalized multi-peptide vaccines in a first clinical trial for CLL (NCT04688385). This workflow for the design of peptide warehouses is easily transferable to other tumor entities and can provide the foundation for the development of broad personalized T cell-based immunotherapy approaches.


Asunto(s)
Antígenos de Neoplasias , Epítopos , Inmunoterapia , Leucemia Linfocítica Crónica de Células B , Péptidos , Adulto , Antígenos de Neoplasias/administración & dosificación , Antígenos de Neoplasias/inmunología , Epítopos/administración & dosificación , Epítopos/inmunología , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/terapia , Masculino , Péptidos/administración & dosificación , Péptidos/inmunología
16.
Cancer Discov ; 11(8): 1982-1995, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34011563

RESUMEN

Patients with cancer, in particular patients with hematologic malignancies, are at increased risk for critical illness upon COVID-19. We here assessed antibody as well as CD4+ and CD8+ T-cell responses in unexposed and SARS-CoV-2-infected patients with cancer to characterize SARS-CoV-2 immunity and to identify immunologic parameters contributing to COVID-19 outcome. Unexposed patients with hematologic malignancies presented with reduced prevalence of preexisting SARS-CoV-2 cross-reactive CD4+ T-cell responses and signs of T-cell exhaustion compared with patients with solid tumors and healthy volunteers. Whereas SARS-CoV-2 antibody responses did not differ between patients with COVID-19 and cancer and healthy volunteers, intensity, expandability, and diversity of SARS-CoV-2 T-cell responses were profoundly reduced in patients with cancer, and the latter associated with a severe course of COVID-19. This identifies impaired SARS-CoV-2 T-cell immunity as a potential determinant for dismal outcome of COVID-19 in patients with cancer. SIGNIFICANCE: This first comprehensive analysis of SARS-CoV-2 immune responses in patients with cancer reports on the potential implications of impaired SARS-CoV-2 T-cell responses for understanding pathophysiology and predicting severity of COVID-19, which in turn might allow for the development of therapeutic measures and vaccines for this vulnerable patient population.See related commentary by Salomé and Horowitz, p. 1877.This article is highlighted in the In This Issue feature, p. 1861.


Asunto(s)
COVID-19 , Neoplasias , Linfocitos T CD4-Positivos , Humanos , Inmunidad , Receptor de Muerte Celular Programada 1 , SARS-CoV-2
17.
Sci Transl Med ; 13(590)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33723016

RESUMEN

Long-term immunological memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for the development of population-level immunity, which is the aim of vaccination approaches. Reports on rapidly decreasing antibody titers have led to questions regarding the efficacy of humoral immunity alone. The relevance of T cell memory after coronavirus disease 2019 (COVID-19) remains unclear. Here, we investigated SARS-CoV-2 antibody and T cell responses in matched samples of COVID-19 convalescent individuals up to 6 months after infection. Longitudinal analysis revealed decreasing and stable spike- and nucleocapsid-specific antibody responses, respectively. In contrast, functional T cell responses remained robust, and even increased, in both frequency and intensity. Single peptide mapping of T cell diversity over time identified open reading frame-independent, dominant T cell epitopes mediating long-term SARS-CoV-2 T cell responses. Identification of these epitopes may be fundamental for COVID-19 vaccine design.


Asunto(s)
COVID-19/inmunología , Memoria Inmunológica , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Convalecencia , Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Cinética , Mapeo Peptídico , Fosfoproteínas/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
18.
Nat Immunol ; 22(1): 74-85, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32999467

RESUMEN

T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19.


Asunto(s)
COVID-19/inmunología , Epítopos de Linfocito T/inmunología , Péptidos/inmunología , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Vacunas Virales/inmunología , COVID-19/prevención & control , COVID-19/virología , Reacciones Cruzadas/inmunología , Antígenos HLA-DR/inmunología , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Memoria Inmunológica/inmunología , SARS-CoV-2/fisiología , Linfocitos T/metabolismo , Vacunas Virales/administración & dosificación
19.
Hum Mol Genet ; 29(6): 892-906, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31960910

RESUMEN

Proteolytic fragmentation of polyglutamine-expanded ataxin-3 is a concomitant and modifier of the molecular pathogenesis of Machado-Joseph disease (MJD), the most common autosomal dominant cerebellar ataxia. Calpains, a group of calcium-dependent cysteine proteases, are important mediators of ataxin-3 cleavage and implicated in multiple neurodegenerative conditions. Pharmacologic and genetic approaches lowering calpain activity showed beneficial effects on molecular and behavioural disease characteristics in MJD model organisms. However, specifically targeting one of the calpain isoforms by genetic means has not yet been evaluated as a potential therapeutic strategy. In our study, we tested whether calpains are overactivated in the MJD context and if reduction or ablation of calpain-1 expression ameliorates the disease-associated phenotype in MJD cells and mice. In all analysed MJD models, we detected an elevated calpain activity at baseline. Lowering or removal of calpain-1 in cells or mice counteracted calpain system overactivation and led to reduced cleavage of ataxin-3 without affecting its aggregation. Moreover, calpain-1 knockout in YAC84Q mice alleviated excessive fragmentation of important synaptic proteins. Despite worsening some motor characteristics, YAC84Q mice showed a rescue of body weight loss and extended survival upon calpain-1 knockout. Together, our findings emphasize the general potential of calpains as a therapeutic target in MJD and other neurodegenerative diseases.


Asunto(s)
Ataxina-3/metabolismo , Calcio/metabolismo , Calpaína/fisiología , Modelos Animales de Enfermedad , Enfermedad de Machado-Joseph/patología , Animales , Ataxina-3/genética , Femenino , Enfermedad de Machado-Joseph/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/metabolismo , Fenotipo , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...