RESUMEN
We evaluated the efficacy of the growth regulator triflumuron (TFM) in inducing mortality and disrupting both oviposition and egg hatching in Rhodnius prolixus adult females. TFM was administered via feeding, topically or by continuous contact with impregnated surfaces. Feeding resulted in mild biological effects compared with topical and impregnated surfaces. One day after treatment, the highest mortality levels were observed with topical surface and 30 days later both topical and impregnated surfaces induced higher mortalities than feeding. Oral treatment inhibited oviposition even at lower doses, and hatching of eggs deposited by treated females was similarly affected by the three delivery modes. Topical treatment of eggs deposited by nontreated females significantly reduced hatching. However, treatment per contact of eggs oviposited by untreated females did not disrupt eclosion. Additionally, oral treatment increased the number of immature oocytes per female, and topical treatment reduced the mean size of oocytes. TFM also affected carcass chitin content, diuresis, and innate immunity of treated insects. These results suggest that TFM acts as a potent growth inhibitor of R. prolixus adult females and has the potential to be used in integrated vector control programs against hematophagous triatomine species.
Asunto(s)
Benzamidas/farmacología , Insecticidas/farmacología , Reproducción/efectos de los fármacos , Rhodnius/efectos de los fármacos , Animales , Quitina/metabolismo , Diuresis/efectos de los fármacos , Huevos , Métodos de Alimentación , Femenino , Inmunidad Innata/efectos de los fármacos , Oocitos/efectos de los fármacos , Oviposición/efectos de los fármacosRESUMEN
BACKGROUND: Chagas disease is a trypanosomiasis whose agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous bugs known as triatomines. Even though insecticide treatments allow effective control of these bugs in most Latin American countries where Chagas disease is endemic, the disease still affects a large proportion of the population of South America. The features of the disease in humans have been extensively studied, and the genome of the parasite has been sequenced, but no effective drug is yet available to treat Chagas disease. The digestive tract of the insect vectors in which T. cruzi develops has been much less well investigated than blood from its human hosts and constitutes a dynamic environment with very different conditions. Thus, we investigated the composition of the predominant bacterial species of the microbiota in insect vectors from Rhodnius, Triatoma, Panstrongylus and Dipetalogaster genera. METHODOLOGY/PRINCIPAL FINDINGS: Microbiota of triatomine guts were investigated using cultivation-independent methods, i.e., phylogenetic analysis of 16s rDNA using denaturing gradient gel electrophoresis (DGGE) and cloned-based sequencing. The Chao index showed that the diversity of bacterial species in triatomine guts is low, comprising fewer than 20 predominant species, and that these species vary between insect species. The analyses showed that Serratia predominates in Rhodnius, Arsenophonus predominates in Triatoma and Panstrongylus, while Candidatus Rohrkolberia predominates in Dipetalogaster. CONCLUSIONS/SIGNIFICANCE: The microbiota of triatomine guts represents one of the factors that may interfere with T. cruzi transmission and virulence in humans. The knowledge of its composition according to insect species is important for designing measures of biological control for T. cruzi. We found that the predominant species of the bacterial microbiota in triatomines form a group of low complexity whose structure differs according to the vector genus.