Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1974): 20212540, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35506220

RESUMEN

Body size mediates life history, physiology and inter- and intra-specific interactions. Within species, sexes frequently differ in size, reflecting divergent selective pressures and/or constraints. Both sexual selection and differences in environmentally mediated reproductive constraints can drive sexual size dimorphism, but empirically testing causes of dimorphism is challenging. Manakins (Pipridae), a family of Neotropical birds comprising approximately 50 species, exhibit a broad range of size dimorphism from male- to female-biased and are distributed across gradients of precipitation and elevation. Males perform courtship displays ranging from simple hops to complex aerobatic manoeuvres. We tested associations between sexual size dimorphism and (a) agility and (b) environment, analysing morphological, behavioural and environmental data for 22 manakin species in a phylogenetic framework. Sexual dimorphism in mass was most strongly related to agility, with males being lighter than females in species performing more aerial display behaviours. However, wing and tarsus length dimorphism were more strongly associated with environmental variables, suggesting that different sources of selection act on different aspects of body size. These results highlight the strength of sexual selection in shaping morphology-even atypical patterns of dimorphism-while demonstrating the importance of constraints and ecological consequences of body size evolution.


Asunto(s)
Baile , Passeriformes , Animales , Tamaño Corporal , Femenino , Masculino , Filogenia , Caracteres Sexuales
2.
Sci Rep ; 11(1): 13048, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193882

RESUMEN

Apex predators are threatened globally, and their local extinctions are often driven by failures in sustaining prey acquisition under contexts of severe prey scarcity. The harpy eagle Harpia harpyja is Earth's largest eagle and the apex aerial predator of Amazonian forests, but no previous study has examined the impact of forest loss on their feeding ecology. We monitored 16 active harpy eagle nests embedded within landscapes that had experienced 0 to 85% of forest loss, and identified 306 captured prey items. Harpy eagles could not switch to open-habitat prey in deforested habitats, and retained a diet based on canopy vertebrates even in deforested landscapes. Feeding rates decreased with forest loss, with three fledged individuals dying of starvation in landscapes that succumbed to 50-70% deforestation. Because landscapes deforested by > 70% supported no nests, and eaglets could not be provisioned to independence within landscapes > 50% forest loss, we established a 50% forest cover threshold for the reproductive viability of harpy eagle pairs. Our scaling-up estimate indicates that 35% of the entire 428,800-km2 Amazonian 'Arc of Deforestation' study region cannot support breeding harpy eagle populations. Our results suggest that restoring harpy eagle population viability within highly fragmented forest landscapes critically depends on decisive forest conservation action.

3.
Ecol Evol ; 9(10): 5752-5765, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31160996

RESUMEN

Identifying the processes that determine avian migratory strategies in different environmental contexts is imperative to understanding the constraints to survival and reproduction faced by migratory birds across the planet.We compared the spring migration strategies of Fork-tailed Flycatchers (Tyrannus s. savana) that breed at south-temperate latitudes (i.e., austral migrants) vs. tropical latitudes (i.e., intratropical migrants) in South America. We hypothesized that austral migrant flycatchers are more time-selected than intratropical migrants during spring migration. As such, we predicted that austral migrants, which migrate further than intratropical migrants, will migrate at a faster rate and that the rate of migration for austral migrants will be positively correlated with the onset of spring migration.We attached light-level geolocators to Fork-tailed Flycatchers at two tropical breeding sites in Brazil and at two south-temperate breeding sites in Argentina and tracked their movements until the following breeding season.Of 286 geolocators that were deployed, 37 were recovered ~1 year later, of which 28 provided useable data. Rate of spring migration did not differ significantly between the two groups, and only at one site was there a significantly positive relationship between date of initiation of spring migration and arrival date.This represents the first comparison of individual migratory strategies among conspecific passerines breeding at tropical vs. temperate latitudes and suggests that austral migrant Fork-tailed Flycatchers in South America are not more time-selected on spring migration than intratropical migrant conspecifics. Low sample sizes could have diminished our power to detect differences (e.g., between sexes), such that further research into the mechanisms underpinning migratory strategies in this poorly understood system is necessary.

4.
Mol Ecol ; 28(10): 2681-2693, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959568

RESUMEN

Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance-decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host-parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.


Asunto(s)
Aves/parasitología , Ecología , Interacciones Huésped-Parásitos , Malaria Aviar/parasitología , Animales , Haemosporida/genética , Haemosporida/patogenicidad , Especificidad del Huésped , Filogenia , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...