Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(33): 6234-6246, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37555622

RESUMEN

We investigate the interplay between chirality and confinement induced by the presence of an external potential. For potentials having radial symmetry, the circular character of the trajectories induced by the chiral motion reduces the spatial fluctuations of the particle, thus providing an extra effective confining mechanism, that can be interpreted as a lowering of the effective temperature. In the case of non-radial potentials, for instance, with an elliptic shape, chirality displays a richer scenario. Indeed, the chirality can break the parity symmetry of the potential that is always fulfilled in the non-chiral system. The probability distribution displays a strong non-Maxwell-Boltzmann shape that emerges in cross-correlations between the two Cartesian components of the position, that vanishes in the absence of chirality or when radial symmetry of the potential is restored. These results are obtained by considering two popular models in active matter, i.e. chiral Active Brownian particles and chiral active Ornstein-Uhlenbeck particles.

2.
J Chem Phys ; 159(4)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37486049

RESUMEN

The vibrational dynamics of solids is described by phonons constituting basic collective excitations in equilibrium crystals. Here, we consider a non-equilibrium active solid, formed by self-propelled particles, which bring the system into a non-equilibrium steady-state. We identify novel vibrational collective excitations of non-equilibrium (active) origin, which coexist with phonons and dominate over them when the system is far from equilibrium. These vibrational excitations are interpreted in the framework of non-equilibrium physics, in particular, stochastic thermodynamics. We call them "entropons" because they are the modes of spectral entropy production (at a given frequency and wave vector). The existence of entropons could be verified in future experiments on dense self-propelled colloidal Janus particles and granular active matter, as well as in living systems, such as dense cell monolayers.

3.
Soft Matter ; 18(7): 1412-1422, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35080576

RESUMEN

We study the dynamical properties of an active particle subject to a swimming speed explicitly depending on the particle position. The oscillating spatial profile of the swim velocity considered in this paper takes inspiration from experimental studies based on Janus particles whose speed can be modulated by an external source of light. We suggest and apply an appropriate model of an active Ornstein Uhlenbeck particle (AOUP) to the present case. This allows us to predict the stationary properties, by finding the exact solution of the steady-state probability distribution of particle position and velocity. From this, we obtain the spatial density profile and show that its form is consistent with the one found in the framework of other popular models. The reduced velocity distribution highlights the emergence of non-Gaussianity in our generalized AOUP model which becomes more evident as the spatial dependence of the velocity profile becomes more pronounced. Then, we focus on the time-dependent properties of the system. Velocity autocorrelation functions are studied in the steady-state combining numerical and analytical methods derived under suitable approximations. We observe a non-monotonic decay in the temporal shape of the velocity autocorrelation function which depends on the ratio between the persistence length and the spatial period of the swim velocity. In addition, we numerically and analytically study the mean square displacement and the long-time diffusion coefficient. The ballistic regime, observed in the small-time region, is deeply affected by the properties of the swim velocity landscape which induces also a crossover to a sub-ballistic but superdiffusive regime for intermediate times. Finally, the long-time diffusion coefficient decreases as the amplitude of the swim velocity oscillations increases because the diffusion is mainly determined by those regions where the particles are slow.

4.
J Chem Phys ; 155(23): 234902, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34937362

RESUMEN

We study the dynamics of one-dimensional active particles confined in a double-well potential, focusing on the escape properties of the system, such as the mean escape time from a well. We first consider a single-particle both in near and far-from-equilibrium regimes by varying the persistence time of the active force and the swim velocity. A non-monotonic behavior of the mean escape time is observed with the persistence time of the activity, revealing the existence of an optimal choice of the parameters favoring the escape process. For small persistence times, a Kramers-like formula with an effective potential obtained within the unified colored noise approximation is shown to hold. Instead, for large persistence times, we developed a simple theoretical argument based on the first passage theory, which explains the linear dependence of the escape time with the persistence of the active force. In the second part of the work, we consider the escape on two active particles mutually repelling. Interestingly, the subtle interplay of active and repulsive forces may lead to a correlation between particles, favoring the simultaneous jump across the barrier. This mechanism cannot be observed in the escape process of two passive particles. Finally, we find that in the small persistence regime, the repulsion favors the escape, such as in passive systems, in agreement with our theoretical predictions, while for large persistence times, the repulsive and active forces produce an effective attraction, which hinders the barrier crossing.

5.
J Chem Phys ; 154(24): 244901, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34241356

RESUMEN

We investigate a two-dimensional system of active particles confined to a narrow annular domain. Despite the absence of explicit interactions among the velocities or the active forces of different particles, the system displays a transition from a disordered and stuck state to an ordered state of global collective motion where the particles rotate persistently clockwise or anticlockwise. We describe this behavior by introducing a suitable order parameter, the velocity polarization, measuring the global alignment of the particles' velocities along the tangential direction of the ring. We also measure the spatial velocity correlation function and its correlation length to characterize the two states. In the rotating phase, the velocity correlation displays an algebraic decay that is analytically predicted together with its correlation length, while in the stuck regime, the velocity correlation decays exponentially with a correlation length that increases with the persistence time. In the first case, the correlation (and, in particular, its correlation length) does not depend on the active force but the system size only. The global collective motion, an effect caused by the interplay between finite-size, periodicity, and persistent active forces, disappears as the size of the ring becomes infinite, suggesting that this phenomenon does not correspond to a phase transition in the usual thermodynamic sense.

6.
Soft Matter ; 17(15): 4109-4121, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33734261

RESUMEN

Recently, it has been discovered that systems of active Brownian particles (APB) at high density organise their velocities into coherent domains showing large spatial structures in the velocity field. This collective behavior occurs spontaneously, i.e. is not caused by any specific interparticle force favoring the alignment of the velocities. This phenomenon was investigated in the absence of thermal noise and in the overdamped regime where inertial forces could be neglected. In this work, we demonstrate through numerical simulations and theoretical analysis that velocity alignment is a robust property of ABP and persists even in the presence of inertial forces and thermal fluctuations. We also show that a single dimensionless parameter, such as the Péclet number customarily employed in the description of self-propelled particles, is not sufficient to fully characterize this phenomenon either in the regimes of large viscosity or small mass. Indeed, the size of the velocity domains, measured through the correlation length of the spatial velocity correlation, remains constant when the swim velocity increases and decreases as the rotational diffusion becomes larger. We find that, contrary to the common belief, the spatial velocity correlation not only depends on inertia but is also non-symmetrically affected by mass and inverse viscosity variations. We conclude that in self-propelled systems, at variance with passive systems, variations in the inertial time (mass over solvent viscosity) and mass act as independent control parameters. Finally, we highlight the non-thermal nature of the spatial velocity correlations that are fairly insensitive both to solvent and active temperatures.

7.
J Chem Phys ; 154(2): 024902, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33445896

RESUMEN

We study how inertia affects the behavior of self-propelled particles moving through a viscous solvent by employing the underdamped version of the active Ornstein-Uhlenbeck model. We consider both potential-free and harmonically confined underdamped active particles and investigate how the single-particle trajectories change as the drag coefficient is varied. In both cases, we obtain the matrix of correlations between the position, velocity, and self-propulsion and the explicit form of the steady-state probability distribution function. Our results reveal the existence of marked equal-time correlations between velocity and active force in the non-equilibrium steady state. Inertia also affects the time-dependent properties of the active particles and leads to non-monotonic decay of the two-time correlation functions of particle positions and velocities. We also study how the virial pressure of particles confined to harmonic traps changes as one goes from the overdamped to the underdamped regime. Finally, the study of the correlations in the underdamped regime is extended to the case of a chain of active particles interacting via harmonic springs.

8.
J Chem Phys ; 153(18): 184901, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187418

RESUMEN

We consider the solid or hexatic non-equilibrium phases of an interacting two-dimensional system of active Brownian particles at high density and investigate numerically and theoretically the properties of the velocity distribution function and the associated kinetic temperature. We obtain approximate analytical predictions for the shape of the velocity distribution and find a transition from a Mexican-hat-like to a Gaussian-like distribution as the persistence time of the active force changes from the small to the large persistence regime. Through a detailed numerical and theoretical analysis of the single-particle velocity variance, we report an exact analytical expression for the kinetic temperature of dense spherical self-propelled particles that holds also in the non-equilibrium regimes with large persistence times and discuss its range of validity.

9.
Sci Rep ; 9(1): 16687, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723160

RESUMEN

We study a system of active particles with soft repulsive interactions that lead to an active cluster-crystal phase in two dimensions. We use two different modelizations of the active force - Active Brownian particles (ABP) and Ornstein-Uhlenbeck particles (AOUP) - and focus on analogies and differences between them. We study the different phases appearing in the system, in particular, the formation of ordered patterns drifting in space without being altered. We develop an effective description which captures some properties of the stable clusters for both ABP and AOUP. As an additional point, we confine such a system in a large channel, in order to study the interplay between the cluster crystal phase and the well-known accumulation near the walls, a phenomenology typical of active particles. For small activities, we find clusters attached to the walls and deformed, while for large values of the active force they collapse in stripes parallel to the walls.

10.
J Chem Phys ; 150(14): 144903, 2019 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-30981222

RESUMEN

The transport of independent active Brownian particles within a two-dimensional narrow channel, modeled as an open-wedge, is studied both numerically and theoretically. We show that the active force tends to localize the particles near the walls, thus reducing the effect of the entropic force which, instead, is prevailing in the case of passive particles. As a consequence, the exit of active particles from the smaller side of the channel is facilitated with respect to their passive counterpart. By continuously re-injecting particles in the middle of the wedge, we obtain a steady regime whose properties are investigated in the presence and absence of an external constant driving field. We characterize the statistics and properties of the exit process from the two opposite sides of the channel, also by making a comparison between the active case and passive case. Our study reveals the existence of an optimal value of the persistence time of the active force which is able to guarantee the maximal efficiency in the transport process.

11.
Sci Rep ; 9(1): 1386, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718579

RESUMEN

We study a system of interacting active particles, propelled by colored noises, characterized by an activity time τ, and confined by a single-well anharmonic potential. We assume pair-wise repulsive forces among particles, modelling the steric interactions among microswimmers. This system has been experimentally studied in the case of a dilute suspension of Janus particles confined through acoustic traps. We observe that already in the dilute regime - when inter-particle interactions are negligible - increasing the persistent time, τ, pushes the particles away from the potential minimum, until a saturation distance is reached. We compute the phase diagram (activity versus interaction length), showing that the interaction does not suppress this delocalization phenomenon but induces a liquid- or solid-like structure in the densest regions. Interestingly a reentrant behavior is observed: a first increase of τ from small values acts as an effective warming, favouring fluidization; at higher values, when the delocalization occurs, a further increase of τ induces freezing inside the densest regions. An approximate analytical scheme gives fair predictions for the density profiles in the weakly interacting case. The analysis of non-equilibrium heat fluxes reveals that in the region of largest particle concentration equilibrium is restored in several aspects.

12.
Soft Matter ; 15(12): 2627-2637, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30810571

RESUMEN

In this work, we study the stationary behavior of an assembly of independent chiral active particles under confinement by employing an extension of the active Ornstein-Uhlenbeck model. The chirality modeled by means of an effective torque term leads to a drastic reduction in the accumulation near the walls with respect to the case without handedness and to the appearance of currents parallel to the container walls accompanied by a large accumulation of particles in the inner region. In the case of two-dimensional chiral particles confined by harmonic walls, we determine the analytic form of the distribution of positions and velocities in two different situations: a rotationally invariant confining potential and an infinite channel with parabolic walls. Both these models display currents and chirality induced inner accumulation. These phenomena are further investigated by means of a more realistic description of a channel, where the wall and bulk regions are clearly separated. The corresponding current and density profiles are obtained by numerical simulations. At variance with the harmonic models, the third model shows a progressive emptying of the wall regions and the simultaneous enhancement of the bulk population. We explain such a phenomenon in terms of the combined effect of wall repulsive forces and chiral motion and provide a semiquantitative description of the current profile in terms of effective viscosity of the chiral gas.

13.
J Chem Phys ; 150(2): 024902, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646719

RESUMEN

We study a system of non-interacting active particles, propelled by colored noises, characterized by an activity time τ, and confined by a double-well potential. A straightforward application of this system is the problem of barrier crossing of active particles, which has been studied only in the limit of small activity. When τ is sufficiently large, equilibrium-like approximations break down in the barrier crossing region. In the model under investigation, it emerges as a sort of "negative temperature" region, and numerical simulations confirm the presence of non-convex local velocity distributions. We propose, in the limit of large τ, approximate equations for the typical trajectories which successfully predict many aspects of the numerical results. The local breakdown of detailed balance and its relation with a recent definition of non-equilibrium heat exchange is also discussed.

14.
Soft Matter ; 14(44): 9044-9054, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30387799

RESUMEN

We consider the effect of geometric confinement on the steady-state properties of a one-dimensional active suspension subject to thermal noise. The random active force is modeled by an Ornstein-Uhlenbeck process and the system is studied both numerically, by integrating the Langevin governing equations, and analytically by solving the associated Fokker-Planck equation under suitable approximations. The comparison between the two approaches displays a fairly good agreement and in particular, we show that the Fokker-Planck approach can predict the structure of the system both in the wall region and in the bulk-like region where the surface forces are negligible. The simultaneous presence of thermal noise and active forces determines the formation of a layer, extending from the walls towards the bulk, where the system exhibits polar order. We relate the presence of such ordering to the mechanical pressure exerted on the container's walls and show how it depends on the separation of the boundaries and determines a Casimir-like attractive force mediated by the active suspension.

15.
J Chem Phys ; 147(2): 024903, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28711034

RESUMEN

We consider the pressure in the steady-state regime of three stochastic models characterized by self-propulsion and persistent motion and widely employed to describe the behavior of active particles, namely, the Active Brownian particle (ABP) model, the Gaussian colored noise (GCN) model, and the unified colored noise approximation (UCNA) model. Whereas in the limit of short but finite persistence time, the pressure in the UCNA model can be obtained by different methods which have an analog in equilibrium systems, in the remaining two models only the virial route is, in general, possible. According to this method, notwithstanding each model obeys its own specific microscopic law of evolution, the pressure displays a certain universal behavior. For generic interparticle and confining potentials, we derive a formula which establishes a correspondence between the GCN and the UCNA pressures. In order to provide explicit formulas and examples, we specialize the discussion to the case of an assembly of elastic dumbbells confined to a parabolic well. By employing the UCNA we find that, for this model, the pressure determined by the thermodynamic method coincides with the pressures obtained by the virial and mechanical methods. The three methods when applied to the GCN give a pressure identical to that obtained via the UCNA. Finally, we find that the ABP virial pressure exactly agrees with the UCNA and GCN results.

16.
Phys Chem Chem Phys ; 19(18): 11260-11272, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28417122

RESUMEN

The translocation of a lipid binding protein (LBP) is studied using a phenomenological coarse-grained computational model that simplifies both chain and pore geometry. We investigated via molecular dynamics the interplay between transport and unfolding in the presence of a nanopore whose section oscillates periodically in time with a frequency ω, a motion often referred to as the radial breathing mode (RBM). We found that the LPB when mechanically pulled into the vibrating nanopore exhibits a translocation dynamics that in some frequency range is accelerated and shows a frequency locking to the pore dynamics. The main effect of pore vibrations is the suppression of stalling events of the translocation dynamics, hence, proper frequency tuning allows both regularization and control of the overall transport process. Finally, the interpretation of the simulation results is easily achieved by resorting to a first passage theory of elementary driven-diffusion processes.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/química , Hormonas Gastrointestinales/química , Nanoporos , Humanos , Simulación de Dinámica Molecular , Conformación Proteica , Transporte de Proteínas , Desplegamiento Proteico
17.
Soft Matter ; 12(26): 5727-38, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27301440

RESUMEN

We discuss different definitions of pressure for a system of active spherical particles driven by a non-thermal coloured noise. We show that mechanical, kinetic and free-energy based approaches lead to the same result up to first order in the non-equilibrium expansion parameter. The first prescription is based on a generalisation of the kinetic mesoscopic virial equation and expresses the pressure exerted on the walls in terms of the average of the virial of the inter-particle forces. In the second approach, the pressure and the surface tension are identified with the volume and area derivatives, respectively, of the partition function associated with the known stationary non-equilibrium distribution of the model. The third method is a mechanical approach and is related to the work necessary to deform the system. The pressure is obtained by comparing the expression of the work in terms of local stress and strain with the corresponding expression in terms of microscopic distribution. This is determined from the force balance encoded in the Born-Green-Yvon equation. Such a method has the advantage of giving a formula for the local pressure tensor and the surface tension even in inhomogeneous situations. By direct inspection, we show that the three procedures lead to the same values of the pressure, and give support to the idea that the partition function, obtained via the unified coloured noise approximation, is more than a formal property of the system, but determines the stationary non-equilibrium thermodynamics of the model.

18.
J Chem Phys ; 143(18): 184501, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26567671

RESUMEN

The physics of diffusion phenomena in nano- and microchannels has attracted a lot of attention in recent years, due to its close connection with many technological, medical, and industrial applications. In the present paper, we employ a kinetic approach to investigate how the confinement in nanostructured geometries affects the diffusive properties of fluid mixtures and leads to the appearance of properties different from those of bulk systems. In particular, we derive an expression for the friction tensor in the case of a bulk fluid mixture confined to a narrow slit having undulated walls. The boundary roughness leads to a new mechanism for transverse diffusion and can even lead to an effective diffusion along the channel larger than the one corresponding to a planar channel of equivalent section. Finally, we discuss a reduction of the previous equation to a one dimensional effective diffusion equation in which an entropic term encapsulates the geometrical information on the channel shape.

19.
J Chem Phys ; 143(18): 184907, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26567684

RESUMEN

We analyze the electroosmotic flow (EOF) of an electrolytic solution in a polymer coated capillary electrophoresis tube. The polymeric density, charge, thickness, and the capillary tube charge vary as a function of pH and produce a non-trivial modulation of the EOF, including a flow reversal at acid pH conditions. By means of a theoretical argument and numerical simulations, we recover the experimental curve for the EOF, providing a firm approach for predictive analysis of electroosmosis under different polymeric coating conditions. A proposed application of the approach is to determine the near-wall charge of the coating to be used for further quantitative analysis of the electroosmotic flow and mobility.

20.
Soft Matter ; 11(45): 8768-81, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26387914

RESUMEN

We present a stochastic description of a model of N mutually interacting active particles in the presence of external fields and characterize its steady state behavior in the absence of currents. To reproduce the effects of the experimentally observed persistence of the trajectories of the active particles we consider a Gaussian force having a non-vanishing correlation time τ, whose finiteness is a measure of the activity of the system. With these ingredients we show that it is possible to develop a statistical mechanical approach similar to the one employed in the study of equilibrium liquids and to obtain the explicit form of the many-particle distribution function by means of the multidimensional unified colored noise approximation. Such a distribution plays a role analogous to the Gibbs distribution in equilibrium statistical mechanics and provides complete information about the microscopic state of the system. From here we develop a method to determine the one- and two-particle distribution functions in the spirit of the Born-Green-Yvon (BGY) equations of equilibrium statistical mechanics. The resulting equations which contain extra-correlations induced by the activity allow us to determine the stationary density profiles in the presence of external fields, the pair correlations and the pressure of active fluids. In the low density regime we obtained the effective pair potential ϕ(r) acting between two isolated particles separated by a distance, r, showing the existence of an effective attraction between them induced by activity. Based on these results, in the second half of the paper we propose a mean field theory as an approach simpler than the BGY hierarchy and use it to derive a van der Waals expression of the equation of state.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Hidrodinámica , Modelos Estadísticos , Movimiento (Física) , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...