Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(8)2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37631974

RESUMEN

Since the first SARS-CoV-2 outbreak, mutations such as single nucleotide polymorphisms (SNPs) and insertion/deletions (INDELs) have changed and characterized the viral genome sequence, structure and protein folding leading to the onset of new variants. The presence of those alterations challenges not only the clinical field but also the diagnostic demand due to failures in gene detection or incompleteness of polymerase chain reaction (PCR) results. In particular, the analysis of understudied genes such as N and the investigation through whole-genome next generation sequencing (WG-NGS) of regions more prone to mutate can help in the identification of new or reacquired mutations, with the aim of designing robust and long-lasting primers. In 48 samples of SARS-CoV-2 (including Alpha, Delta and Omicron variants), a lack of N gene amplification was observed in the genomes analyzed through WG-NGS. Three gene regions were detected hosting the highest number of SNPs and INDELs. In several cases, the latter can interfere deeply with both the sensitivity of diagnostic methodologies and the final protein folding. The monitoring over time of the viral evolution and the reacquisition among different variants of the same mutations or different alterations within the same genomic positions can be relevant to avoid unnecessary consumption of resources.


Asunto(s)
SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Genómica , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética
2.
Int J Infect Dis ; 131: 65-70, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36924839

RESUMEN

OBJECTIVES: Recombination related to coinfection is a huge driving force in determining the virus genetic variability, particularly in conditions of partial immune control, leading to prolonged infection. Here, we characterized a distinctive mutational pattern, highly suggestive of Delta-Omicron double infection, in a lymphoma patient. METHODS: The specimen was characterized through a combined approach, analyzing the results of deep sequencing in primary sample, viral culture, and plaque assay. RESULTS: Bioinformatic analysis on the sequences deriving from the primary sample supports the hypothesis of a double viral population within the host. Plaque assay on viral culture led to the isolation of a recombinant strain deriving from Delta and Omicron lineages, named XS, which virtually replaced its parent lineages within a single viral propagation. CONCLUSION: It is impossible to establish whether the recombination event happened within the host or in vitro; however, it is important to monitor co-infections, especially in the exceptional intrahost environment of patients who are immunocompromised, as strong driving forces of viral evolution.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2/genética , Huésped Inmunocomprometido , Biología Computacional
3.
Viruses ; 15(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36851504

RESUMEN

Literature offers plenty of cases of immunocompromised patients, who develop chronic and severe SARS-CoV-2 infections. The aim of this study is to provide further insight into SARS-CoV-2 evolutionary dynamic taking into exam a subject suffering from follicular lymphoma, who developed a persistent infection for over 7 months. Eight nasopharyngeal swabs were obtained, and were analyses by qRT-PCR for diagnostic purposes. All of them were considered eligible (Ct < 30) for NGS sequencing. Sequence analysis showed that all sequences matched the B.1.617.2 AY.122 lineage, but they differed by few mutations identifying three genetically similar subpopulations, which evolved during the course of infection, demonstrating that prolonged replication is paralleled with intra-host virus evolution. These evidences support the hypothesis that SARS-CoV-2 adaptive capacities are able to shape a heterogeneous viral population in the context of immunocompromised patients. Spill-over of viral variants with enhanced transmissibility or immune escape capacities from these subjects is plausible.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Huésped Inmunocomprometido , Mutación
4.
Microorganisms ; 11(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677483

RESUMEN

The recent emergence of a number of new SARS-CoV-2 variants resulting from recombination between two distinct parental lineages or sub-lineages within the same lineage has sparked the debate regarding potential enhanced viral infectivity and immune escape. Among these, XBB, recombinant of BA.2.10 and BA.2.75, has caused major concern in some countries due to its rapid increase in prevalence. In this study, we tested XBB escape capacity from mRNA-vaccine-induced (BNT162b2) neutralising antibodies compared to B.1 ancestral lineage and another co-circulating variant (B.1.1.529 BA.5) by analysing sera collected 30 days after the second dose in 92 healthcare workers. Our data highlighted an enhanced and statistically significant immune escape ability of the XBB recombinant. Although these are preliminary results, this study highlights the importance of immune escape monitoring of new and forthcoming variants and of the reformulation of existing vaccines.

5.
Front Neurosci ; 16: 945278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340774

RESUMEN

Introduction: Autism spectrum disorders (ASD) are the most prevalent neurobiological disorders in children. The etiology comprises genetic, epigenetic, and environmental factors such as dysfunction of the immune system. Epigenetic mechanisms are mainly represented by DNA methylation, histone modifications, and microRNAs (miRNA). The major explored epigenetic mechanism is mediated by miRNAs which target genes known to be involved in ASD pathogenesis. Salivary poly-omic RNA measurements have been associated with ASD and are helpful to differentiate ASD endophenotypes. This study aims to comprehensively examine miRNA expression in children with ASD and to reveal potential biomarkers and possible disease mechanisms so that they can be used to improve faction between individuals by promoting more personalized therapeutic approaches. Materials and methods: Saliva samples were collected from 10 subjects: 5 samples of children with ASD and 5 from healthy controls. miRNAs were analyzed using an Illumina Next-Generation-Sequencing (NGS) system. Results: Preliminary data highlighted the presence of 365 differentially expressed miRNAs. Pathway analysis, molecular function, biological processes, and target genes of 41 dysregulated miRNAs were assessed, of which 20 were upregulated, and 21 were downregulated in children with ASD compared to healthy controls. Conclusion: The results of this study represent preliminary but promising data, as the identified miRNA pathways could represent useful biomarkers for the early non-invasive diagnosis of ASD.

6.
Microorganisms ; 10(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36013991

RESUMEN

The incidence of total joint arthroplasty is increasing over time since the last decade and expected to be more than 4 million by 2030. As a consequence, the detection of infections associated with surgical interventions is increasing and prosthetic joint infections are representing both a clinically and economically challenging problem. Many pathogens, from bacteria to fungi, elicit the immune system response and produce a polymeric matrix, the biofilm, that serves as their protection. In the last years, the implementation of diagnostic methodologies reduced the error rate and the turn-around time: polymerase chain reaction, targeted or broad-spectrum, and next-generation sequencing have been introduced and they represent a robust approach nowadays that frees laboratories from the unique approach based on culture-based techniques.

7.
Sci Rep ; 12(1): 12479, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864211

RESUMEN

The ongoing evolution of SARS-CoV-2 and the emergence of new viral variants bearing specific escape mutations responsible for immune evasion from antibody neutralisation has required a more accurate characterisation of the immune response as one of the evolutive forces behind viral adaptation to a largely immunised human population. In this work, culturing in the presence of neutralising sera vigorously promoted mutagenesis leading to the acquisition of known escape mutations on the spike as well as new presumptive escape mutations on structural proteins whose role as target of the neutralizing antibody response might have been thus far widely neglected. From this perspective, this study, in addition to tracing the past evolution of the species back to interactions with neutralising antibody immune response, also offers a glimpse into future evolutive scenarios.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/genética , Humanos , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
8.
Viruses ; 14(6)2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35746627

RESUMEN

In-vitro viral studies are still fundamental for biomedical research since studying the virus kinetics on cells is crucial for the determination of the biological properties of viruses and for screening the inhibitors of infections. Moreover, testing potential viral contaminants is often mandatory for safety evaluation. Nowadays, viral cytopathic effects are mainly evaluated through end-point assays requiring dye-staining combined with optical evaluation. Recently, optical-based automatized equipment has been marketed, aimed at the real-time screening of cell-layer status and obtaining further insights, which are unavailable with end-point assays. However, these technologies present two huge limitations, namely, high costs and the possibility to study only cytopathic viruses, whose effects lead to plaque formation and layer disruption. Here, we employed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (Pedot:Pss) organic electrochemical transistors (OECTs) for the real-time, electrical monitoring of the infection of cytolytic viruses, i.e., encephalomyocarditis virus (EMCV), and non-cytolytic viruses, i.e., bovine coronavirus (B-CoV), on cells. OECT data on EMCV were validated using a commercially-available optical-based technology, which, however, failed in the B-CoV titration analysis, as expected. The OECTs proved to be reliable, fast, and versatile devices for viral infection monitoring, which could be scaled up at low cost, reducing the operator workload and speeding up in-vitro assays in the biomedical research field.


Asunto(s)
Técnicas Biosensibles , Efecto Citopatogénico Viral
9.
Artículo en Inglés | MEDLINE | ID: mdl-35362389

RESUMEN

Breast cancer, even today, can cause death. Therefore, prevention and early detection are fundamental factors. The mechanisms that favour it are genetic and epigenetic, and seem to play a significant role; also, the microbiota can change estrogen levels and can induce chronic inflammation in the neoplastic site, alternating the balance between proliferation and cell death. Activated steroid hormone receptors induce transcription of genes that encode for proteins involved in cell proliferation and activate another transduction pathway, inducing cell cycle progression and cell migration. These important studies have allowed to develop therapies with selective modulators of estrogen receptors (SERMs), able to block their proliferative and pro-tumorigenic action. Of fundamental importance is also the role played by the microbiota in regulating the metabolism of estrogens and their levels in the blood. There are microbial populations that are able to promote the development of breast cancer, through the production of enzymes responsible for the deconjugation of estrogens, the increase of these in the intestine, subsequent circulation and migration to other locations, such as the udder. Other microbial populations are, instead, able to synthesize estrogen compounds or mimic estrogenic action, and interfere with the metabolism of drugs, affecting the outcome of therapies. The microbial composition of the intestine and hormonal metabolism depend largely on eating habits; the consumption of fats and proteins favours the increase of estrogen in the blood, unlike a diet rich in fiber. Therefore, in-depth knowledge of the microbiota present in the intestine-breast axis could, in the future, encourage the development of new diagnostic and therapeutic approaches to breast cancers.


Asunto(s)
Neoplasias de la Mama , Microbioma Gastrointestinal , Animales , Neoplasias de la Mama/metabolismo , Estrógenos/uso terapéutico , Femenino , Humanos , Receptores de Estrógenos/fisiología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Esteroides/uso terapéutico
10.
J Pers Med ; 11(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34683164

RESUMEN

Background: To date, in personalized medicine approaches, single-cell analyses such as circulating tumour cells (CTC) are able to reveal small structural cell modifications, and therefore can retrieve several biophysical cell properties, such as the cell dimension, the dimensional relationship between the nucleus and the cytoplasm and the optical density of cellular sub-compartments. On this basis, we present in this study a new morphological measurement approach for the detection of vital CTC from pleural washing in individual non-small cell lung cancer (NSCLC) patients. Materials and methods: After a diagnosis of pulmonary malignancy, pleural washing was collected from nine NSCLC patients. The collected samples were processed with a density gradient separation process. Light scattering analysis was performed on a single cell. The results of this analysis were used to obtain the cell's biophysical pattern and, later on, as basis for Machine Learning (ML) on unknown samples. Results: Morphological single-cell analysis followed by ML show a predictive picture for an NSCLC patient, screening that it is possible to distinguish CTC from other cells. Moreover, we find that the proposed measurement approach was fast, reliable, label-free, identifying and count CTC in a biological fluid. Conclusions: Our findings demonstrate that CTC Biophysical Profile by Pure Light Scattering in NSCLC could be used as a promising diagnostic candidate in NSCLC patients.

11.
Pathogens ; 10(10)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34684237

RESUMEN

Nephropathic subjects with impaired immune responses show dramatically high infection rates of coronavirus disease 2019 (COVID-19). This work evaluated the ability to acquire and maintain protective antibodies over time in 26 hemodialysis patients and 21 kidney transplant recipients. The subjects were followed-up through quantitative determination of circulating SARS-CoV-2 S1/S2 IgG and neutralizing antibodies in the 6-month period after clinical and laboratory recovery. A group of 143 healthcare workers with no underlying chronic pathologies or renal diseases recovered from COVID was also evaluated. In both dialysis and transplanted patients, antibody titers reached a zenith around the 3rd month, and then a decline occurred on average between the 270th and 300th day. Immunocompromised patients who lost antibodies around the 6th month were more common than non-renal subjects, although the difference was not significant (38.5% vs. 26.6%). Considering the decay of antibody levels below the positivity threshold (15 AU/mL) as "failure", a progressive loss of immunisation was found in the overall population starting 6 months after recovery. A longer overall antibody persistence was observed in severe forms of COVID-19 (p = 0.0183), but within each group, given the small number of patients, the difference was not significant (dialysis: p = 0.0702; transplant: p = 0.1899). These data suggest that immunocompromised renal patients recovered from COVID-19 have weakened and heterogeneous humoral responses that tend to decay over time. Despite interindividual variability, an association emerged between antibody persistence and clinical severity, similar to the subjects with preserved immune function.

12.
Viruses ; 13(6)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071726

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in Wuhan, China, in late 2019 and is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) represents the gold standard for diagnostic assays even if it cannot precisely quantify viral RNA copies. Thus, we decided to compare qRT-PCR with digital polymerase chain reaction (dPCR), which is able to give an accurate number of RNA copies that can be found in a specimen. However, the aforementioned methods are not capable to discriminate if the detected RNA is infectious or not. For this purpose, it is necessary to perform an endpoint titration on cell cultures, which is largely used in the research field and provides a tissue culture infecting dose per mL (TCID50/mL) value. Both research and diagnostics call for a model that allows the comparison between the results obtained employing different analytical methods. The aim of this study is to define a comparison among two qRT-PCR protocols (one with preliminary RNA extraction and purification and an extraction-free qRT-PCR), a dPCR and a titration on cell cultures. The resulting correlations yield a faithful estimation of the total number of RNA copies and of the infectious viral burden from a Ct value obtained with diagnostic routine tests. All these estimations take into consideration methodological errors linked to the qRT-PCR, dPCR and titration assays.


Asunto(s)
COVID-19/terapia , COVID-19/virología , Reacción en Cadena de la Polimerasa/métodos , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/aislamiento & purificación , Carga Viral/métodos , Animales , Células Cultivadas , Chlorocebus aethiops , Tecnología Digital/métodos , Humanos , SARS-CoV-2/genética , Células Vero , Cultivo de Virus
13.
Cureus ; 12(5): e8338, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32617213

RESUMEN

Background Infective endocarditis (IE) is an uncommon disease with an involved interplay of clinical and surgical team management. We aimed to define diagnosis parameters and delineate in-hospital management in patients with IE admitted in a tertiary hospital of Southern Italian. Materials and methods Fifty-six consecutive patients (42 males, 14 females; age range: 34-85 years) admitted for IE in the Infectious Diseases, Cardiac Surgery, and Cardiology units, between January 2011 and August 2017, were enrolled. Demographic data, mortality, comorbidities, specimen type, microscopy results, special histological staining performed, and antimicrobial therapy were collected and analyzed. Any comments at the multidisciplinary team meetings were recorded in minutes of and approved. Results We found 83.9% of patients with positive blood cultures. The four most common bacteria were methicillin-resistant Staphylococcus aureus (MRSA: 21.3%), methicillin-sensitive Staphylococcus aureus (MSSA: 17%), Streptococci (14.9%), and Enterococci (14.9%). Both in the univariate and multivariate analysis, we observed a significant positive correlation between surgery and complications. Particularly in the univariate analysis only, surgery was positively correlated to males and C-reactive protein (CPR) at baseline. Also, considering the most common bacteria, it resulted in a positive correlation between surgery and MRSA and Streptococci spp. and between complications and MSSA. Finally, the male gender was positively correlated to MSSA and heart complications, major arterial embolism, septic pulmonary emboli, splenic infarction, and cerebral embolism. Conclusions A blood culture test remains a critical factor for the diagnosis of IE and the antibiotic treatment of susceptible and emerging resistant bacteria. Male gender and heart complications are red flags for prompt operative management.

14.
Front Oncol ; 10: 583533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585202

RESUMEN

Positive Regulatory Domain (PRDM) gene family members commonly express two main molecular variants, the PR-plus isoform usually acting as tumor suppressor and the PR-minus one functioning as oncogene. Accordingly, PRDM2/RIZ encodes for RIZ1 (PR-plus) and RIZ2 (PR-minus). In human cancers, genetic or epigenetic modifications induce RIZ1 silencing with an expression level imbalance in favor of RIZ2 that could be relevant for tumorigenesis. Additionally, in estrogen target cells and tissues, estradiol increases RIZ2 expression level with concurrent increase of cell proliferation and survival. Several attempts to study RIZ2 function in HeLa or MCF-7 cells by its over-expression were unsuccessful. Thus, we over-expressed RIZ2 in HEK-293 cells, which are both RIZ1 and RIZ2 positive but unresponsive to estrogens. The forced RIZ2 expression increased cell viability and growth, prompted the G2-to-M phase transition and organoids formation. Accordingly, microarray analysis revealed that RIZ2 regulates several genes involved in mitosis. Consistently, RIZ silencing in both estrogen-responsive MCF-7 and -unresponsive MDA-MB-231 cells induced a reduction of cell proliferation and an increase of apoptosis rate. Our findings add novel insights on the putative RIZ2 tumor-promoting functions, although additional attempts are warranted to depict the underlying molecular mechanism.

15.
Telemed J E Health ; 26(3): 286-293, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30945992

RESUMEN

Introduction: Telemedicine is the use of Information and Communication Technologies (ICT) to improve patient outcomes by increasing access to care, medical information and services. The aim of this pilot study was to evaluate and support the implementation of screening and early detection programs in the prevention of breast cancer and cardiovascular diseases with the establishment of a remote diagnosis through the use of ICT in mobile units. Materials and Methods: A total of 430 individuals were recruited in an area of Southern Italy. Particularly, 321 women were recruited to undergo breast cancer screening in accordance with Italian guidelines. Likewise, cardiovascular screening interested 109 subjects. A self-contained mobile unit with connectivity was provided to offer breast and cardiovascular screenings. To maximize the benefit, we have evaluated the return of investment. Results: The telemedicine screening program allowed the detection of early pathologies. In breast cancer screening, 40.8% of cases were negative to lesions, 34.9% were positive to benign lesions, and 3.1% presented suspicious malignant lesions; these lesions were further checked by histological analyses, which showed a positive response in 70% of cases. The cardiovascular screening concerned 109 participants based on age and other risk factors. We observed a significant difference among risk factors in patients with cardiac disease (p < 0.001); particularly, hypertension was significantly the most present risk factor (51.4%, p < 0.05), followed by smoking (28.4%, p < 0.05). A cardiovascular pathology was detected in 40.4% of enrolled subjects. A 3.3:1 return on investment was calculated. Conclusion: Our findings demonstrate that telemedicine may represent a promising approach to deliver several health services, such as screening programs, with users who cannot utilize services in their locations. The use of telemedicine on diagnostic campers greatly reduces the costs of screening for breast cancer and major cardiovascular diseases within the Southern Italian Health Service. We believe that public investment can have a further significant return on investment by implementing the principles of precision medicine.


Asunto(s)
Neoplasias de la Mama , Enfermedades Cardiovasculares , Unidades Móviles de Salud , Telemedicina , Neoplasias de la Mama/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Detección Precoz del Cáncer , Femenino , Humanos , Italia , Proyectos Piloto , Factores de Riesgo
16.
J Vis Exp ; (153)2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31762464

RESUMEN

Neisseria meningitidis (meningococcus) is a narrow-host-range microorganism, globally recognized as the leading cause of bacterial meningitis. Meningococcus is a transient colonizer of human nasopharynx of approximately 10% of healthy subject. In particular circumstances, it acquires an invasive ability to penetrate the mucosal barrier and invades the bloodstream causing septicaemia. In the latest case, fulminating sepsis could arise even without the consequent development of meningitis. Conversely, bacteria could poorly multiply in the bloodstream, cross the blood brain barrier, reach the central nervous system, leading to fulminant meningitis. The murine models of bacterial meningitis represent a useful tool to investigate the host-pathogen interactions and to analyze the pathogenetic mechanisms responsible for this lethal disease. Although, several experimental model systems have been evaluated over the last decades, none of these were able to reproduce the characteristic pathological events of meningococcal disease. In this experimental protocol, we describe a detailed procedure for the induction of meningococcal meningitis in a mouse model based on the intracisternal inoculation of bacteria. The peculiar signs of human meningitis were recorded in the murine host through the assessment of clinical parameters (e.g., temperature, body weight), evaluation of survival rate, microbiological analysis and histological examination of brain injury. When using intracisternal (i.cist.) inoculum, meningococci complete delivery directly into cisterna magna, leading to a very efficient meningococcal replication in the brain tissue. A 1,000-fold increase of viable count of bacteria is observed in about 18 h. Moreover, meningococci are also found in the spleen, and liver of infected mice, suggesting that the liver may represent a target organ for meningococcal replication.


Asunto(s)
Meningitis Meningocócica/microbiología , Neisseria meningitidis/patogenicidad , Animales , Barrera Hematoencefálica/patología , Encéfalo/patología , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Humanos , Ratones , Neisseria meningitidis/aislamiento & purificación , Vacunación
17.
J Biol Chem ; 294(3): 861-873, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30459231

RESUMEN

The highly conserved zinc finger CCCTC-binding factor (CTCF) regulates genomic imprinting and gene expression by acting as a transcriptional activator or repressor of promoters and insulator of enhancers. The multiple functions of CTCF are accomplished by co-association with other protein partners and are dependent on genomic context and tissue specificity. Despite the critical role of CTCF in the organization of genome structure, to date, only a subset of CTCF interaction partners have been identified. Here we present a large-scale identification of CTCF-binding partners using affinity purification and high-resolution LC-MS/MS analysis. In addition to functional enrichment of specific protein families such as the ribosomal proteins and the DEAD box helicases, we identified novel high-confidence CTCF interactors that provide a still unexplored biochemical context for CTCF's multiple functions. One of the newly validated CTCF interactors is BRG1, the major ATPase subunit of the chromatin remodeling complex SWI/SNF, establishing a relationship between two master regulators of genome organization. This work significantly expands the current knowledge of the human CTCF interactome and represents an important resource to direct future studies aimed at uncovering molecular mechanisms modulating CTCF pleiotropic functions throughout the genome.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Factor de Unión a CCCTC/genética , Línea Celular Tumoral , ADN Helicasas/genética , Humanos , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
18.
Sci Rep ; 7(1): 15805, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150637

RESUMEN

Mesorhizobium loti contains ten genes coding for proteins sharing high amino acid sequence identity with members of the Ros/MucR transcription factor family. Five of these Ros/MucR family members from Mesorhizobium loti (Ml proteins) have been recently structurally and functionally characterized demonstrating that Ml proteins are DNA-binding proteins. However, the DNA-binding studies were performed using the Ros DNA-binding site with the Ml proteins. Currently, there is no evidence as to when the Ml proteins are expressed during the Mesorhizobium lo ti life cycle as well as no information concerning their natural DNA-binding site. In this study, we examine the ml genes expression profile in Mesorhizobium loti and show that ml1, ml2, ml3 and ml5 are expressed during planktonic growth and in biofilms. DNA-binding experiments show that the Ml proteins studied bind a conserved AT-rich site in the promoter region of the exoY gene from Mesorhizobium loti and that the proteins make important contacts with the minor groove of DNA. Moreover, we demonstrate that the Ml proteins studied form higher-order oligomers through their N-terminal region and that the same AT-rich site is recognized by MucR from Brucella abortus using a similar mechanism involving contacts with the minor groove of DNA and oligomerization.


Asunto(s)
Secuencia Rica en At/genética , Proteínas Bacterianas/metabolismo , Brucella abortus/metabolismo , ADN Bacteriano/genética , Mesorhizobium/metabolismo , Multimerización de Proteína , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Biopelículas/crecimiento & desarrollo , Brucella abortus/genética , Recuento de Colonia Microbiana , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Mesorhizobium/genética , Mutación/genética , Netropsina/metabolismo , Fenotipo , Plancton/crecimiento & desarrollo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...