Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 6(3): e03632, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32258479

RESUMEN

The growing interest in bioactive compounds, especially in polyphenols, is due to their abundance in the human diet and potentially positive effects on health. The consumption of polyphenols has been shown to possess anti-diabetic properties by preventing insulin resistance or insulin secretion through different signaling pathways, this effect is associated with their capacity to exert genomic modulations. Several studies have suggested that polyphenols could also bind to cellular proteins and modulate their activity, however, the mechanisms of action underlying their beneficial effects are complex and are not fully understood. The aim of this work was to characterize phenolic compounds present in blue corn and black bean extracts as well as identify their potential interactions with target proteins involved in diabetes pathogenesis using in silico approach. Total polyphenols content of both blue corn and black beans was identified using UPLC-ESI/qTOF/MS and quantified by colorimetric assays. In this work we identified twenty-eight phenolic compounds in the extracts, mainly anthocyanins, flavonols, hydroxycinamic acids, dihydroxybenzoic acids, flavones, isoflavones, and flavanols. Interactome of these compounds with thirteen target proteins involved in type 2 diabetes mellitus was performed in-silico. In total, 312 bioactive compounds/protein interaction analyses were acquired. Molecular docking results highlighted that nine of the top ten interactions correspond to anthocyanins, cyanidin 3-glucoside with 11ß-HS, GFAT, PPARG; delphinidin 3-glucoside with 11ß-HS, GFAT, PTP and RTKs; and petunidin 3-glucoside with 11ß-HS and PTP. These proteins are involved in mechanisms regulating functions such as inflammation, insulin resistance, oxidative stress, glucose and lipid metabolism. In conclusion, this work provides a prediction of the potential molecular mechanism of black bean and blue corn polyphenols, specifically anthocyanins and could constitute new pathways by which compounds exert their antidiabetic benefits.

2.
Springerplus ; 5(1): 1007, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27441131

RESUMEN

Vinasses are a residual liquid generated after the production of beverages, such as mezcal and tequila, from agave (Agave L.), sugarcane (Saccharum officinarum L.) or sugar beet (Beta vulgaris L.). These effluents have specific characteristics such as an acidic pH (from 3.9 to 5.1), a high chemical oxygen demand (50,000-95,000 mg L(-1)) and biological oxygen demand content (18,900-78,300 mg L(-1)), a high total solids content (79,000 and 37,500 mg L(-1)), high total volatile solids 79,000 and 82,222 mg L(-1), and K(+) (10-345 g L(-1)) content. Vinasses are most commonly discarded onto soil. Irrigation of soil with vinasses, however, may induce physical, chemical and biochemical changes and affect crop yields. Emission of greenhouse gases (GHG), such as carbon dioxide, nitrous oxide and methane, might increase from soils irrigated with vinasses. An estimation of GHG emission from soil irrigated with vinasses is given and discussed in this review.

3.
Springerplus ; 4: 419, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26301166

RESUMEN

Tequila vinasses represent an acidic, highly concentrated pollutant effluent generated during the distillation step of Tequila production. Although acidogenesis of Tequila vinasses has been reported for some reactor configurations, a characterization of the bacteria present during this metabolic process is lacking in the literature. Hydraulic retention times (HRT) between 36 and 6 h and organic loading rates (OLR) from 5 to 30 g COD L(-1) d(-1) were assessed in a UASB reactor fed with Tequila vinasses. Results showed that OLR excerted a stronger effect (p ≤ 0.0001) on parameters such as gas production rate, pH, and acidity than HRT. While it was clear that shorter HRT were related to higher volatile fatty acid production levels. Figures above 2 Lgas Lreactor (-1) d(-1) (where "gas" could be a mixture of methane and hydrogen) were attained only with an OLR as high as 30 g COD L(-1) d(-1). Bacterial identification of a sludge sample at the end of the experiment revealed that acid-tolerant microorganisms that remained in the reactor were exclusively affiliated to the Clostridium genera, being the first report of organisms identification for Tequila vinasses acidogenesis. These findings are relevant to the field of biotechnology since acidogenesis of Tequila vinasses using identified and studied microorganism abilities (i.e. Clostridium strains) presents the opportunity of optimizing processes intended for different metabolites production (butanol, volatile fatty acids, hydrogen, solvents).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...