Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Res ; 57(1): 31, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783330

RESUMEN

BACKGROUND: Members of the ß-subfamily of connexins contain an intracellular pocket surrounded by amino acid residues from the four transmembrane helices. The presence of this pocket has not previously been investigated in members of the α-, γ-, δ-, and ε-subfamilies. We studied connexin50 (Cx50) as a representative of the α-subfamily, because its structure has been determined and mutations of Cx50 are among the most common genetic causes of congenital cataracts. METHODS: To investigate the presence and function of the intracellular pocket in Cx50 we used molecular dynamics simulation, site-directed mutagenesis, gap junction tracer intercellular transfer, and hemichannel activity detected by electrophysiology and by permeation of charged molecules. RESULTS: Employing molecular dynamics, we determined the presence of the intracellular pocket in Cx50 hemichannels and identified the amino acids participating in its formation. We utilized site-directed mutagenesis to alter a salt-bridge interaction that supports the intracellular pocket and occurs between two residues highly conserved in the connexin family, R33 and E162. Substitution of opposite charges at either position decreased formation of gap junctional plaques and cell-cell communication and modestly reduced hemichannel currents. Simultaneous charge reversal at these positions produced plaque-forming non-functional gap junction channels with highly active hemichannels. CONCLUSIONS: These results show that interactions within the intracellular pocket influence both gap junction channel and hemichannel functions. Disruption of these interactions may be responsible for diseases associated with mutations at these positions.


Asunto(s)
Conexinas , Uniones Comunicantes , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conexinas/metabolismo , Conexinas/genética , Conexinas/química , Uniones Comunicantes/metabolismo , Uniones Comunicantes/fisiología , Humanos , Animales , Mutación , Comunicación Celular/fisiología
2.
Heliyon ; 10(7): e27888, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560181

RESUMEN

Non-junctional connexin43 (Cx43) plasma membrane hemichannels have been implicated in several inflammatory diseases, particularly playing a role in ATP release that triggers activation of the inflammasome. Therapies targeting the blocking of the hemichannels to prevent the pathological release or uptake of ions and signalling molecules through its pores are of therapeutic interest. To date, there is no close-to-native, high-definition documentation of the impact of Cx43 hemichannel-mediated inflammation on cellular ultrastructure, neither is there a robust account of the ultrastructural changes that occur following treatment with selective Cx43 hemichannel blockers such as Xentry-Gap19 (XG19). A combination of same-sample correlative high-resolution three-dimensional fluorescence microscopy and soft X-ray tomography at cryogenic temperatures, enabled in the identification of novel 3D molecular interactions within the cellular milieu when comparing behaviour in healthy states and during the early onset or late stages under inflammatory conditions. Notably, our findings suggest that XG19 blockage of connexin hemichannels under pro-inflammatory conditions may be crucial in preventing the direct degradation of connexosomes by lysosomes, without affecting connexin protein translation and trafficking. We also delineated fine and gross cellular phenotypes, characteristic of inflammatory insult or road-to-recovery from inflammation, where XG19 could indirectly prevent and reverse inflammatory cytokine-induced mitochondrial swelling and cellular hypertrophy through its action on Cx43 hemichannels. Our findings suggest that XG19 might have prophylactic and therapeutic effects on the inflammatory response, in line with functional studies.

3.
Br J Pharmacol ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679932

RESUMEN

BACKGROUND AND PURPOSE: ATP is highly accumulated in secretory vesicles and secreted upon exocytosis from neurons and endocrine cells. In adrenal chromaffin granules, intraluminal ATP reaches concentrations over 100 mM. However, how these large amounts of ATP contribute to exocytosis has not been investigated. EXPERIMENTAL APPROACH: Exocytotic events in bovine and mouse adrenal chromaffin cells were measured with single cell amperometry. Cytosolic Ca2+ measurements were carried out in Fluo-4 loaded cells. Submembrane Ca2+ was examined in PC12 cells transfected with a membrane-tethered Ca2+ indicator Lck-GCaMP3. ATP release was measured using the luciferin/luciferase assay. Knockdown of P2X7 receptors was induced with short interfering RNA (siRNA). Direct Ca2+ influx through this receptor was measured using a P2X7 receptor-GCamp6 construct. KEY RESULTS: ATP induced exocytosis in chromaffin cells, whereas the ectonucleotidase apyrase reduced the release events induced by the nicotinic agonist dimethylphenylpiperazinium (DMPP), high KCl, or ionomycin. The purinergic agonist BzATP also promoted a secretory response that was dependent on extracellular Ca2+. A740003, a P2X7 receptor antagonist, abolished secretory responses of these secretagogues. Exocytosis was also diminished in chromaffin cells when P2X7 receptors were silenced using siRNAs and in cells of P2X7 receptor knockout mice. In PC12 cells, DMPP induced ATP release, triggering Ca2+ influx through P2X7 receptors. Furthermore, BzATP, DMPP, and KCl allowed the formation of submembrane Ca2+ microdomains inhibited by A740003. CONCLUSION AND IMPLICATIONS: Autocrine activation of P2X7 receptors constitutes a crucial feedback system that amplifies the secretion of catecholamines in chromaffin cells by favouring submembrane Ca2+ microdomains.

4.
J Cancer Res Clin Oncol ; 149(19): 17335-17346, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831273

RESUMEN

PURPOSE: The CCR5/CCL5 axis is essential for interactions between malignant cells and microenvironment components, promoting tumor progression in oral squamous cell carcinoma (OSCC). This study aims to evaluate the association of CCL5 and CCR5 with the behavior of oral cancer and assess the therapeutic potential of a CCR5 antagonist. METHODS: A retrospective study to analyze CCR5 and CCL5 expression on paraffin-embedded tissues was performed. In cell lines, rhCCL5 was added to induce CCR5-related pathways, and Maraviroc and shRNA against CCR5 were used to neutralize the receptor. Finally, an in vivo murine orthotopic xenograft model of tongue cancer was used to evaluate Maraviroc as an oncologic therapy. After 15 days, the mice were killed, and the primary tumors and cervical lymph nodes were analyzed. RESULTS: The expression of CCR5 was associated with clinical stage and metastasis, and CCL5 was related to overall survival. Adding rhCCL5 induced cell proliferation, while shRNA and Maraviroc reduced it in a dose-dependent manner. Maraviroc treatment also increased apoptosis and modified cytoskeletal organization. In vivo, Maraviroc reduced neck metastasis. CONCLUSIONS: The effects of CCR5 antagonists in OSCC have been poorly studied, and this study reports in vitro and in vivo evidence for the effects of Maraviroc in OSCC. Our results suggest that the CCR5/CCL5 axis plays a role in oral cancer behavior, and that its inhibition is a promising new therapy alternative.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Animales , Ratones , Maraviroc/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello , Estudios Retrospectivos , Línea Celular Tumoral , Neoplasias de la Boca/tratamiento farmacológico , ARN Interferente Pequeño/metabolismo , Microambiente Tumoral , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo
5.
Front Cell Dev Biol ; 10: 1071202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699003

RESUMEN

Some mutations in gap junction protein Connexin 26 (Cx26) lead to syndromic deafness, where hearing impairment is associated with skin disease, like in Keratitis Ichthyosis Deafness (KID) syndrome. This condition has been linked to hyperactivity of connexin hemichannels but this has never been demonstrated in cochlear tissue. Moreover, some KID mutants, like Cx26S17F, form hyperactive HCs only when co-expressed with other wild-type connexins. In this work, we evaluated the functional consequences of expressing a KID syndromic mutation, Cx26S17F, in the transgenic mouse cochlea and whether co-expression of Cx26S17F and Cx30 leads to the formation of hyperactive HCs. Indeed, we found that cochlear explants from a constitutive knock-in Cx26S17F mouse or conditional in vitro cochlear expression of Cx26S17F produces hyperactive HCs in supporting cells of the organ of Corti. These conditions also produce loss of hair cells stereocilia. In supporting cells, we found high co-localization between Cx26S17F and Cx30. The functional properties of HCs formed in cells co-expressing Cx26S17F and Cx30 were also studied in oocytes and HeLa cells. Under the recording conditions used in this study Cx26S17F did not form functional HCs and GJCs, but cells co-expressing Cx26S17F and Cx30 present hyperactive HCs insensitive to HCs blockers, Ca2+ and La3+, resulting in more Ca2+ influx and cellular damage. Molecular dynamic analysis of putative heteromeric HC formed by Cx26S17F and Cx30 presents alterations in extracellular Ca2+ binding sites. These results support that in KID syndrome, hyperactive HCs are formed by the interaction between Cx26S17F and Cx30 in supporting cells probably causing damage to hair cells associated to deafness.

6.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499026

RESUMEN

Wound healing is a dynamic process required to maintain skin integrity and which relies on the precise migration of different cell types. A key molecule that regulates this process is ATP. However, the mechanisms involved in extracellular ATP management are poorly understood, particularly in the human dermis. Here, we explore the role, in human fibroblast migration during wound healing, of Pannexin 1 channels and their relationship with purinergic signals and in vivo cell surface filamentous actin dynamics. Using siRNA against Panx isoforms and different Panx1 channel inhibitors, we demonstrate in cultured human dermal fibroblasts that the absence or inhibition of Panx1 channels accelerates cell migration, increases single-cell motility, and promotes actin redistribution. These changes occur through a mechanism that involves the release of ATP to the extracellular space through a Panx1-dependent mechanism and the activation of the purinergic receptor P2X7. Together, these findings point to a pivotal role of Panx1 channels in skin fibroblast migration and suggest that these channels could be a useful pharmacological target to promote damaged skin healing.


Asunto(s)
Actinas/química , Membrana Celular/metabolismo , Conexinas/metabolismo , Fibroblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Piel/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Movimiento Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , ARN Interferente Pequeño/metabolismo , Cicatrización de Heridas
7.
J Neurochem ; 157(6): 1789-1808, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32931038

RESUMEN

Pannexin-1 (Panx1) forms plasma membrane channels that allow the exchange of small molecules between the intracellular and extracellular compartments, and are involved in diverse physiological and pathological responses in the nervous system. However, the signaling mechanisms that induce their opening still remain elusive. Here, we propose a new mechanism for Panx1 channel activation through a functional crosstalk with the highly Ca2+ permeable α7 nicotinic acetylcholine receptor (nAChR). Consistent with this hypothesis, we found that activation of α7 nAChRs induces Panx1-mediated dye uptake and ATP release in the neuroblastoma cell line SH-SY5Y-α7. Using membrane permeant Ca2+ chelators, total internal reflection fluorescence microscopy in SH-SY5Y-α7 cells expressing a membrane-tethered GCAMP3, and Src kinase inhibitors, we further demonstrated that Panx1 channel opening depends on Ca2+ signals localized in submembrane areas, as well as on Src kinases. In turn, Panx1 channels amplify cytosolic Ca2+ signals induced by the activation of α7 nAChRs, by a mechanism that seems to involve ATP release and P2X7 receptor activation, as hydrolysis of extracellular ATP with apyrase or blockage of P2X7 receptors with oxidized ATP significantly reduces the α7 nAChR-Ca2+ signal. The physiological relevance of this crosstalk was also demonstrated in neuroendocrine chromaffin cells, wherein Panx1 channels and P2X7 receptors contribute to the exocytotic release of catecholamines triggered by α7 nAChRs, as measured by amperometry. Together these findings point to a functional coupling between α7 nAChRs, Panx1 channels and P2X7 receptors with physiological relevance in neurosecretion.


Asunto(s)
Células Cromafines/metabolismo , Conexinas/metabolismo , Exocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Receptor Cross-Talk/fisiología , Receptores Purinérgicos P2X7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Quelantes del Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Bovinos , Línea Celular Tumoral , Células Cromafines/efectos de los fármacos , Exocitosis/efectos de los fármacos , Humanos , Ratones , Receptor Cross-Talk/efectos de los fármacos
8.
Neurobiol Dis ; 130: 104497, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31176720

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron death. A 20% of familial ALS cases are associated with mutations in the gene coding for superoxide dismutase 1 (SOD1). The accumulation of abnormal aggregates of different proteins is a common feature in motor neurons of patients and transgenic ALS mice models, which are thought to contribute to disease pathogenesis. Developmental morphogens, such as the Wnt family, regulate numerous features of neuronal physiology in the adult brain and have been implicated in neurodegeneration. ß-catenin is a central mediator of both, Wnt signaling activity and cell-cell interactions. We previously reported that the expression of mutant SOD1 in the NSC34 motor neuron cell line decreases basal Wnt pathway activity, which correlates with cytosolic ß-catenin accumulation and impaired neuronal differentiation. In this work, we aimed a deeper characterization of ß-catenin distribution in models of ALS motor neurons. We observed extensive accumulation of ß-catenin supramolecular structures in motor neuron somas of pre-symptomatic mutant SOD1 mice. In cell-cell appositional zones of NSC34 cells expressing mutant SOD1, ß-catenin displays a reduced co-distribution with E-cadherin accompanied by an increased association with the gap junction protein Connexin-43; these findings correlate with impaired intercellular adhesion and exacerbated cell coupling. Remarkably, pharmacological inhibition of the glycogen synthase kinase-3ß (GSK3ß) in both NSC34 cell lines reverted both, ß-catenin aggregation and the adverse effects of mutant SOD1 expression on neuronal differentiation. Our findings suggest that early defects in ß-catenin distribution could be an underlying factor affecting the onset of neurodegeneration in familial ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , beta Catenina/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones
9.
J Invest Dermatol ; 135(5): 1338-1347, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25625422

RESUMEN

Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca(2+) overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.


Asunto(s)
Conexina 43/genética , Conexinas/genética , Sordera/genética , Uniones Comunicantes/fisiología , Ictiosis/genética , Canales Iónicos/fisiología , Queratitis/genética , Mutación/genética , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Conexina 26 , Conexina 43/fisiología , Conexinas/fisiología , Sordera/fisiopatología , Uniones Comunicantes/genética , Genotipo , Células HeLa , Humanos , Ictiosis/fisiopatología , Canales Iónicos/genética , Queratitis/fisiopatología , Fenotipo
10.
Mol Biol Cell ; 23(17): 3299-311, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22787277

RESUMEN

To identify motifs involved in oligomerization of the gap junction protein Cx26, we studied individual transmembrane (TM) domains and the full-length protein. Using the TOXCAT assay for interactions of isolated TM α-helices, we found that TM1, a Cx26 pore domain, had a strong propensity to homodimerize. We identified amino acids Val-37-Ala-40 (VVAA) as the TM1 motif required for homodimerization. Two deafness-associated Cx26 mutations localized in this region, Cx26V37I and Cx26A40G, differentially affected dimerization. TM1-V37I dimerized only weakly, whereas TM1-A40G did not dimerize. When the full-length mutants were expressed in HeLa cells, both Cx26V37I and Cx26A40G formed oligomers less efficiently than wild-type Cx26. A Cx26 cysteine substitution mutant, Cx26V37C formed dithiothreitol-sensitive dimers. Substitution mutants of Val-37 formed intercellular channels with reduced function, while mutants of Ala-40 did not form functional gap junction channels. Unlike wild-type Cx26, neither Cx26V37I nor Cx26A40G formed functional hemichannels in low extracellular calcium. Thus the VVAA motif of Cx26 is critical for TM1 dimerization, hexamer formation, and channel function. The differential effects of VVAA mutants on hemichannels and gap junction channels imply that inter-TM interactions can differ in unapposed and docked hemichannels. Moreover, Cx26 oligomerization appears dependent on transient TM1 dimerization as an intermediate step.


Asunto(s)
Conexinas/química , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Línea Celular Tumoral , Conexina 26 , Conexinas/genética , Células HeLa , Humanos , Canales Iónicos/metabolismo , Mutación , Multimerización de Proteína , Estructura Terciaria de Proteína
11.
Biochem J ; 436(1): 35-43, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21348854

RESUMEN

Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies.


Asunto(s)
Conexina 43/química , Conexina 43/metabolismo , Conexinas/química , Conexinas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Conexina 26 , Conexina 43/genética , Conexinas/genética , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Transfección
12.
Antioxid Redox Signal ; 11(2): 309-22, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18837651

RESUMEN

Gap-junction channels connect the cytoplasm of adjacent cells, allowing the diffusion of ions and small metabolites. They are formed at the appositional plasma membranes by a family of related proteins named connexins. Mutations in connexins 26, 31, 30, 32, and 43 have been associated with nonsyndromic or syndromic deafness. The majority of these mutations are inherited in an autosomal recessive manner, but a few of them have been associated with dominantly inherited hearing loss. Mutations in the connexin26 gene (GJB2) are the most common cause of genetic deafness. This review summarizes the most relevant and recent information about different mutations in connexin genes found in human patients, with emphasis on GJB2. The possible effects of the mutations on channel expression and function are discussed, in addition to their possible physiologic consequences for inner ear physiology. Finally, we propose that connexin channels (gap junctions and hemichannels) may be targets for age-related hearing loss induced by oxidative damage.


Asunto(s)
Sordera/genética , Uniones Comunicantes/genética , Uniones Comunicantes/fisiología , Pérdida Auditiva/genética , Conexina 26 , Conexinas/genética , Conexinas/metabolismo , Conexinas/fisiología , Uniones Comunicantes/metabolismo , Humanos
13.
J Neurochem ; 103(4): 1574-81, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17760862

RESUMEN

Various studies have focused in the relative contribution of different voltage-activated Ca(2+) channels (VACC) to total transmitter release. However, how Ca(2+) entry through a given VACC subtype defines the pattern of individual exocytotic events remains unknown. To address this question, we have used amperometry in bovine chromaffin cells. L, N, and P/Q channels were individually or jointly blocked with furnidipine, omega-conotoxin GVIA, omega-agatoxin IVA, or omega-conotoxin MVIIC. The three channel types contributed similarly to cytosolic Ca(2+) signals induced by 70 mmol/L K(+). However, they exhibited different contributions to the frequency of exocytotic events and they were shown to differently regulate the final steps of the exocytosis. When compared with the other VACC subtypes, Ca(2+) entry through P/Q channels effectively induced exocytosis, it decreased fusion pore stability and accelerated its expansion. Conversely, Ca(2+) entry through N channels was less efficient in inducing exocytotic events, also slowing fusion pore expansion. Finally, Ca(2+) entry through L channels inefficiently induced exocytosis, and the individual blockade of this channel significantly modified fusion pore dynamics. The distance between a given VACC subtype and the release sites could account for the differential effects of the distinct VACC on the fusion pore dynamics.


Asunto(s)
Canales de Calcio/clasificación , Canales de Calcio/fisiología , Calcio/fisiología , Potenciales de Acción/fisiología , Médula Suprarrenal/metabolismo , Médula Suprarrenal/fisiología , Animales , Calcio/metabolismo , Bovinos , Exocitosis/fisiología
14.
J Neurochem ; 99(1): 29-41, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16889641

RESUMEN

We have used astrocyte-conditioned medium (ACM) to promote the transdifferentiation of bovine chromaffin cells and study modifications in the exocytotic process when these cells acquire a neuronal phenotype. In the ACM-promoted neuronal phenotype, secretory vesicles and intracellular Ca2+ rise were preferentially distributed in the neurite terminals. Using amperometry, we observed that the exocytotic events also occurred mainly in the neurite terminals, wherein the individual exocytotic events had smaller quantal size than in undifferentiated cells. Additionally, duration of pre-spike current was significantly shorter, suggesting that ACM also modifies the fusion pore stability. After long exposure (7-9 days) to ACM, the kinetics of catecholamine release from individual vesicles was markedly accelerated. The morphometric analysis of vesicle diameters suggests that the rapid exocytotic events observed in neurites of ACM-treated cells correspond to the exocytosis of large dense-core vesicles (LDCV). On the other hand, experiments performed in EGTA-loaded cells suggest that ACM treatment promotes a better coupling between voltage-gated calcium channels (VGCC) and LDCV. Thus, our findings reveal that ACM promotes a neuronal phenotype in chromaffin cells, wherein the exocytotic kinetics is accelerated. Such rapid exocytosis mode could be caused at least in part by a better coupling between secretory vesicles and VGCC.


Asunto(s)
Astrocitos/fisiología , Células Cromafines/fisiología , Exocitosis/fisiología , Neuronas/fisiología , Animales , Astrocitos/citología , Astrocitos/ultraestructura , Señalización del Calcio , Bovinos , Células Cultivadas , Corteza Cerebral/fisiología , Células Cromafines/citología , Medios de Cultivo Condicionados , Electrofisiología , Neuronas/citología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...