Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(13): e0142121, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35758695

RESUMEN

Fimbrial adhesins promote bacterial adherence and biofilm formation. Sequencing of avian pathogenic Escherichia coli (APEC) strain QT598 identified new fimbriae belonging to the π group, which we named PL (P-like) fimbriae since the genetic organization and sequence are similar to those of P and related fimbriae. Genes encoding PL fimbriae located on IncF plasmids are present in diverse E. coli isolates from poultry, human systemic infections, and other sources. As with P fimbriae, PL fimbriae exhibit divergence in adhesin-encoding genes and could be divided into 5 classes based on sequence differences in the PlfG adhesin. plf genes from two predominant PlfG adhesin classes, PlfG class I (PlfGI) and PlfGII, were cloned. PL fimbriae were visualized by electron microscopy, associated with increased biofilm, demonstrated distinct hemagglutination profiles, and promoted adherence to human bladder and kidney epithelial cells. The genes encoding hybrid fimbriae were comprised of genes from plfQT598, wherein plfG was replaced by papG; the adhesin-encoding genes were also functional and mediated adherence to epithelial cells, demonstrating compatibility between the components of these two types of fimbriae. Deletion of plf genes did not reduce colonization of the mouse urinary tract in a single-strain infection model. In contrast, loss of plf genes significantly reduced competitive colonization in the mouse kidneys. Furthermore, plf gene expression was increased over 40-fold in the bladder compared to during in vitro culture. Overall, PL fimbriae represent a new group of fimbriae demonstrating both functional differences from and similarities to P fimbriae, which mediated adherence to host cells and improved competitive colonization of the mouse kidney. IMPORTANCE Fimbriae are important colonization factors in many bacterial species. The identification of a new type of fimbriae encoded on some IncF plasmids in E. coli was investigated. Genomic sequences demonstrated these fimbrial gene clusters have genetic diversity, particularly in the adhesin-encoding plfG gene. Functional studies demonstrated differences in hemagglutination specificity, although both types of Plf adhesin under study mediated adherence to human urinary epithelial cells. A plf mutant also showed decreased colonization of the kidneys in a mouse competitive infection model. PL fimbriae may represent previously unrecognized adhesins that could contribute to host specificity and tissue tropism of some E. coli strains.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Proteínas Fimbrias , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Animales , Adhesión Bacteriana/fisiología , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Humanos , Ratones
2.
Virulence ; 10(1): 568-587, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31198092

RESUMEN

Serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted proteins that contribute to virulence and function as proteases, toxins, adhesins, and/or immunomodulators. An extra-intestinal pathogenic E. coli (ExPEC) O1:K1 strain, QT598, isolated from a turkey, was shown to contain vat, tsh, and three uncharacterized SPATE-encoding genes. Uncharacterized SPATEs: Sha (Serine-protease hemagglutinin autotransporter), TagB and TagC (tandem autotransporter genes B and C) were tested for activities including hemagglutination, autoaggregation, and cytotoxicity when expressed in E. coli K-12. Sha and TagB conferred autoaggregation and hemagglutination activities. TagB, TagC, and Sha all exhibited cytopathic effects on a bladder epithelial cell line. In QT598, tagB and tagC are tandemly encoded on a genomic island, and were present in 10% of UTI isolates and 4.7% of avian E. coli. Sha is encoded on a virulence plasmid and was present in 1% of UTI isolates and 20% of avian E. coli. To specifically examine the role of SPATEs for infection, the 5 SPATE genes were deleted from strain QT598 and tested for cytotoxicity. Loss of all five SPATEs abrogated the cytopathic effect on bladder epithelial cells, although derivatives producing any of the 5 SPATEs retained cytopathic activity. In mouse infections, sha gene-expression was up-regulated a mean of sixfold in the bladder compared to growth in vitro. Loss of either tagBC or sha did not reduce urinary tract colonization. Deletion of all 5 SPATEs, however, significantly reduced competitive colonization of the kidney supporting a cumulative role of SPATEs for QT598 in the mouse UTI model.


Asunto(s)
Escherichia coli Patógena Extraintestinal/genética , Riñón/microbiología , Serina Proteasas/metabolismo , Sistemas de Secreción Tipo V/metabolismo , Animales , Toxinas Bacterianas/metabolismo , Línea Celular , Infecciones por Escherichia coli/microbiología , Escherichia coli Patógena Extraintestinal/patogenicidad , Femenino , Genoma Bacteriano , Humanos , Ratones , Filogenia , Serina Proteasas/genética , Sistemas de Secreción Tipo V/genética , Sistema Urinario/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...