Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 614(7947): 349-357, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725930

RESUMEN

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Asunto(s)
Adenosina Trifosfato , Neoplasias de la Mama , Ciclo del Ácido Cítrico , Desaceleración , Neoplasias Pulmonares , Metástasis de la Neoplasia , Neoplasias Pancreáticas , Animales , Ratones , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo del Ácido Cítrico/fisiología , Metabolismo Energético , Glucólisis , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Especificidad de Órganos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Biosíntesis de Proteínas
3.
Circulation ; 143(12): 1184-1197, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33435695

RESUMEN

BACKGROUND: After heart transplantation, endomyocardial biopsy (EMBx) is used to monitor for acute rejection (AR). Unfortunately, EMBx is invasive, and its conventional histological interpretation has limitations. This is a validation study to assess the performance of a sensitive blood biomarker-percent donor-derived cell-free DNA (%ddcfDNA)-for detection of AR in cardiac transplant recipients. METHODS: This multicenter, prospective cohort study recruited heart transplant subjects and collected plasma samples contemporaneously with EMBx for %ddcfDNA measurement by shotgun sequencing. Histopathology data were collected to define AR, its 2 phenotypes (acute cellular rejection [ACR] and antibody-mediated rejection [AMR]), and controls without rejection. The primary analysis was to compare %ddcfDNA levels (median and interquartile range [IQR]) for AR, AMR, and ACR with controls and to determine %ddcfDNA test characteristics using receiver-operator characteristics analysis. RESULTS: The study included 171 subjects with median posttransplant follow-up of 17.7 months (IQR, 12.1-23.6), with 1392 EMBx, and 1834 %ddcfDNA measures available for analysis. Median %ddcfDNA levels decayed after surgery to 0.13% (IQR, 0.03%-0.21%) by 28 days. Also, %ddcfDNA increased again with AR compared with control values (0.38% [IQR, 0.31-0.83%], versus 0.03% [IQR, 0.01-0.14%]; P<0.001). The rise was detected 0.5 and 3.2 months before histopathologic diagnosis of ACR and AMR. The area under the receiver operator characteristic curve for AR was 0.92. A 0.25%ddcfDNA threshold had a negative predictive value for AR of 99% and would have safely eliminated 81% of EMBx. In addition, %ddcfDNA showed distinctive characteristics comparing AMR with ACR, including 5-fold higher levels (AMR ≥2, 1.68% [IQR, 0.49-2.79%] versus ACR grade ≥2R, 0.34% [IQR, 0.28-0.72%]), higher area under the receiver operator characteristic curve (0.95 versus 0.85), higher guanosine-cytosine content, and higher percentage of short ddcfDNA fragments. CONCLUSIONS: We found that %ddcfDNA detected AR with a high area under the receiver operator characteristic curve and negative predictive value. Monitoring with ddcfDNA demonstrated excellent performance characteristics for both ACR and AMR and led to earlier detection than the EMBx-based monitoring. This study supports the use of %ddcfDNA to monitor for AR in patients with heart transplant and paves the way for a clinical utility study. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02423070.


Asunto(s)
Aloinjertos/trasplante , Ácidos Nucleicos Libres de Células/genética , Rechazo de Injerto/fisiopatología , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
4.
Nat Biotechnol ; 37(10): 1137-1144, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31427818

RESUMEN

The utility of autologous induced pluripotent stem cell (iPSC) therapies for tissue regeneration depends on reliable production of immunologically silent functional iPSC derivatives. However, rejection of autologous iPSC-derived cells has been reported, although the mechanism underlying rejection is largely unknown. We hypothesized that de novo mutations in mitochondrial DNA (mtDNA), which has far less reliable repair mechanisms than chromosomal DNA, might produce neoantigens capable of eliciting immune recognition and rejection. Here we present evidence in mice and humans that nonsynonymous mtDNA mutations can arise and become enriched during reprogramming to the iPSC stage, long-term culture and differentiation into target cells. These mtDNA mutations encode neoantigens that provoke an immune response that is highly specific and dependent on the host major histocompatibility complex genotype. Our results reveal that autologous iPSCs and their derivatives are not inherently immunologically inert for autologous transplantation and suggest that iPSC-derived products should be screened for mtDNA mutations.


Asunto(s)
ADN Mitocondrial/genética , Epítopos/genética , Epítopos/inmunología , Enfermedad Injerto contra Huésped/inmunología , Células Madre Pluripotentes Inducidas , Animales , Antígenos , Trasplante de Células/métodos , Células Madre Embrionarias , Rechazo de Injerto/inmunología , Humanos , Trasplante de Riñón/efectos adversos , Trasplante de Hígado/efectos adversos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Trasplante Autólogo
5.
EBioMedicine ; 40: 541-553, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30692045

RESUMEN

BACKGROUND: Allograft failure is common in lung-transplant recipients and leads to poor outcomes including early death. No reliable clinical tools exist to identify patients at high risk for allograft failure. This study tested the use of donor-derived cell-free DNA (%ddcfDNA) as a sensitive marker of early graft injury to predict impending allograft failure. METHODS: This multicenter, prospective cohort study enrolled 106 subjects who underwent lung transplantation and monitored them after transplantation for the development of allograft failure (defined as severe chronic lung allograft dysfunction [CLAD], retransplantation, and/or death from respiratory failure). Plasma samples were collected serially in the first three months following transplantation and assayed for %ddcfDNA by shotgun sequencing. We computed the average levels of ddcfDNA over three months for each patient (avddDNA) and determined its relationship to allograft failure using Cox-regression analysis. FINDINGS: avddDNA was highly variable among subjects: median values were 3·6%, 1·6% and 0·7% for the upper, middle, and low tertiles, respectively (range 0·1%-9·9%). Compared to subjects in the low and middle tertiles, those with avddDNA in the upper tertile had a 6·6-fold higher risk of developing allograft failure (95% confidence interval 1·6-19·9, p = 0·007), lower peak FEV1 values, and more frequent %ddcfDNA elevations that were not clinically detectable. INTERPRETATION: Lung transplant patients with early unresolving allograft injury measured via %ddcfDNA are at risk of subsequent allograft injury, which is often clinically silent, and progresses to allograft failure. FUND: National Institutes of Health.


Asunto(s)
Biomarcadores , Ácidos Nucleicos Libres de Células , Rechazo de Injerto , Trasplante de Pulmón/efectos adversos , Trasplante de Pulmón/mortalidad , Donantes de Tejidos , Anciano , Aloinjertos , Comorbilidad , Femenino , Rechazo de Injerto/inmunología , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Análisis de Secuencia de ADN , Factores de Tiempo , Trasplante Homólogo
6.
J Heart Lung Transplant ; 37(7): 925-932, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29500138

RESUMEN

BACKGROUND: Antibody-mediated rejection (AMR) often progresses to poor health outcomes in lung transplant recipients (LTRs). This, combined with the relatively insensitive clinical tools used for its diagnosis (spirometry, histopathology) led us to determine whether clinical AMR is diagnosed significantly later than its pathologic onset. In this study, we leveraged the high sensitivity of donor-derived cell-free DNA (ddcfDNA), a novel genomic tool, to detect early graft injury after lung transplantation. METHODS: We adjudicated AMR and acute cellular rejection (ACR) in 157 LTRs using the consensus criteria of the International Society for Heart and Lung Transplantation (ISHLT). We assessed the kinetics of allograft injury in relation to ACR or AMR using both clinical criteria (decline in spirometry from baseline) and molecular criteria (ddcfDNA); percent ddcfDNA was quantitated via shotgun sequencing. We used a mixed-linear model to assess the relationship between and ddcfDNA levels and donor-specific antibodies (DSA) in AMR+ LTRs. RESULTS: Compared with ACR, AMR episodes (n = 42) were associated with significantly greater allograft injury when assessed by both spirometric (0.1 liter vs -0.6 liter, p < 0.01) and molecular (ddcfDNA) analysis (1.1% vs 5.4%, p < 0.001). Allograft injury detected by ddcfDNA preceded clinical AMR diagnosis by a median of 2.8 months. Within the same interval, spirometry or histopathology did not reveal findings of allograft injury or dysfunction. Elevated levels of ddcfDNA before clinical diagnosis of AMR were associated with a concurrent rise in DSA levels. CONCLUSION: Diagnosis of clinical AMR in LTRs lags behind DSA-associated molecular allograft injury as assessed by ddcfDNA.


Asunto(s)
Ácidos Nucleicos Libres de Células/análisis , Diagnóstico Tardío , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/inmunología , Isoanticuerpos/fisiología , Trasplante de Pulmón , Rechazo de Injerto/genética , Humanos , Estudios Prospectivos
7.
J Heart Lung Transplant ; 36(9): 1004-1012, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28624139

RESUMEN

BACKGROUND: Use of new genomic techniques in clinical settings requires that such methods are rigorous and reproducible. Previous studies have shown that quantitation of donor-derived cell-free DNA (%ddcfDNA) by unbiased shotgun sequencing is a sensitive, non-invasive marker of acute rejection after heart transplantation. The primary goal of this study was to assess the reproducibility of %ddcfDNA measurements across technical replicates, manual vs automated platforms, and rejection phenotypes in distinct patient cohorts. METHODS: After developing and validating the %ddcfDNA assay, we subjected the method to a rigorous test of its reproducibility. We measured %ddcfDNA in technical replicates performed by 2 independent laboratories and verified the reproducibility of %ddcfDNA patterns of 2 rejection phenotypes: acute cellular rejection and antibody-mediated rejection in distinct patient cohorts. RESULTS: We observed strong concordance of technical-replicate %ddcfDNA measurements across 2 independent laboratories (slope = 1.02, R2 > 0.99, p < 10-6), as well as across manual and automated platforms (slope = 0.80, R2 = 0.92, p < 0.001). The %ddcfDNA measurements in distinct heart transplant cohorts had similar baselines and error rates. The %ddcfDNA temporal patterns associated with rejection phenotypes were similar in both patient cohorts; however, the quantity of ddcfDNA was significantly higher in samples with severe vs mild histologic rejection grade (2.73% vs 0.14%, respectively; p < 0.001). CONCLUSIONS: The %ddcfDNA assay is precise and reproducible across laboratories and in samples from 2 distinct types of heart transplant rejection. These findings pave the way for larger studies to assess the clinical utility of %ddcfDNA as a marker of acute rejection after heart transplantation.


Asunto(s)
Ácidos Nucleicos Libres de Células/análisis , Rechazo de Injerto/sangre , Trasplante de Corazón/efectos adversos , Disfunción Primaria del Injerto/sangre , Donantes de Tejidos , Enfermedad Aguda , Adulto , Biomarcadores/sangre , Femenino , Trasplante de Corazón/métodos , Humanos , Modelos Lineales , Masculino , Disfunción Primaria del Injerto/fisiopatología , Reproducibilidad de los Resultados , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...