Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e37538, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39290291

RESUMEN

Understanding the interactions between drugs and enzymes is crucial for designing effective therapeutics. This study employed a combination of molecular docking and molecular dynamics (MD) simulations to evaluate the binding affinity, stability, and dynamic behavior of two new compounds (compound 1 and compound 2) compared to vancomycin and meropenem against Staphylococcus aureus and Serratia marcescens bacterial enzymes. Molecular docking studies provided insights into the binding interactions and affinities of these compounds, revealing that both compound 1 and compound 2 exhibit promising binding profiles. In particular, compound 1 demonstrated lower binding energies with key enzymes from Staphylococcus aureus compared to vancomycin, suggesting enhanced potential. MD simulations further elucidated the dynamic stability of these complexes. Results indicated that compound 1 maintains consistent binding modes with low RMSD and RMSF values, implying stable interactions. In contrast, vancomycin exhibited high RMSD and RMSF values in some enzyme complexes, reflecting potential instability. Compound 2 showed competitive stability and binding behavior compared to meropenem, with comparable RMSD and RMSF values across various enzyme targets. These findings highlight the potential of compound 1 and compound 2 as viable candidates for further development, offering insights into their stability and efficacy as new therapeutic agents.

2.
RSC Adv ; 14(40): 29052-29071, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39282060

RESUMEN

According to the proposed pyrolytic method, granular activated carbon (AC) Norit 830 W was functionalized by thermal treatment of AC in hydrofluorocarbon (HFC) gases, pentafluoroethane and 1,1,1,2-tetrafluoroethane, at 400-800 °C. This method does not require activation by plasma and photons. Chemical and elemental analysis showed that the pyrolytic treatment provides a loading of 2.95 mmol (5.6 wt%) of fluorine per gram of AC. Nitrogen adsorption measurements indicated that the microporous structure contracted when AC was treated with HFC at temperatures above 400 °C. Thermogravimetry, Fourier transform infrared spectroscopy (FTIR) with attenuated total reflectance (ATR), and X-ray photoelectron spectroscopy (XPS) demonstrated the evolution of oxygen-containing and fluorine-containing groups to more thermostable groups with treatment temperature. The fluorine-containing groups grafted at high temperature, above 600 °C exhibited the highest thermal stability up to 1250 °C in dry argon. From the data of XPS and solid-state 19F nuclear magnetic resonance spectroscopy data, the grafted fluorine exists in several types of grafted F-containing groups, the HFC residues. By changing the thermal regime of fluorination, the composition of fluorine-containing groups on a carbon surface can be regulated. Isolated fluoroalkyl groups can be grafted at temperatures of 400-500 °C, while at 600 °C and above, the semi-ionic fluorine groups increase significantly. The hydrophobized surface demonstrated the ability to effectively decompose H2O2 in methanol solutions.

3.
Environ Geochem Health ; 46(11): 444, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316143

RESUMEN

Aluminum is a prevalent element in nature, but bioavailable forms of aluminum are toxic to plants, animals, and humans. The present study is dedicated to the development of an ecologically friendly, fast, simple, reliable, sensitive, and accurate improved procedure for the determination of subtrace concentrations of bioavailable forms of aluminum in natural waters. The procedure includes the separation and pre-concentration of bioavailable forms of aluminum using vortex-assisted liquid-liquid microextraction (VALLME) of ionic associates with salicylaldehyde 4-picolinhydrazone (SAPH) and sodium dodecyl sulfate (DDSNa) by isoamylacetate (200 µl) and direct electrothermal atomic absorption spectroscopy (ET AAS). The SAPH reagent interacts only with water-soluble forms of aluminum. SAPH is used for the pre-concentration of bioavailable forms of aluminum as well as a chemical modifier; it increases the absorbance and the precision of the analytical signal of aluminum. The calibration curve shows the linear dependence in the range of 0.05-86 µg⋅L-1 of the aluminum concentration (R2 = 0.992), with the limit of detection at 0.015 µg⋅L-1 and the limit of quantification at 0.05 µg⋅L-1. The accuracy of the proposed procedure for bioavailable forms of aluminum determination was verified on model solutions and against a reference method on natural samples of river and lake waters (RSD 3.2-5.2%, recovery 97.1-103.4%).


Asunto(s)
Aluminio , Microextracción en Fase Líquida , Espectrofotometría Atómica , Contaminantes Químicos del Agua , Espectrofotometría Atómica/métodos , Microextracción en Fase Líquida/métodos , Aluminio/química , Aluminio/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Tecnología Química Verde/métodos , Límite de Detección , Agua Dulce/química , Dodecil Sulfato de Sodio/química
4.
ACS Omega ; 9(37): 38618-38628, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39310138

RESUMEN

A novel method for the concurrent introduction of fluorine and bromine into the surface of nanoporous activated carbon (NAC) is evaluated. According to the method, the preheated NAC was treated with 1,2-dibromotetrafluoroethane at elevated temperatures (400-800 °C). Potentiometric and elemental analysis, nitrogen adsorption-desorption, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and 19F solid-state NMR were used to study the NAC microstructure and changes in surface chemistry. The specific modification temperature was found to have a decisive influence on the resulting halogen content of the NAC surface. About 1.5 mmol g-1 of bromine and only 0.5 mmol g-1 of fluorine are chemisorbed on the NAC surface when dual-doped at 400 °C. The fluorination efficiency increases dramatically to 1.84-2.22 mmol g-1 when the process temperature is increased to 500-700 °C. Under the same conditions, the bromination efficiency unexpectedly decreases to 0.66-1.32 mmol g-1. Since halogen-containing groups undergo significant thermal decomposition around 800 °C, the overall halogenation efficiency decreases, accordingly. Both the volume and surface area of the micropores decrease moderately when halogen-containing groups are introduced into the carbon surface layer. Fluorine and bromine are unevenly distributed in the porous structure of the dual-doped NACs, and the outer surface is more halogen-rich than the inner surface of the micropores. XPS and 19F solid-state NMR revealed the selective formation of CF2 groups in the NAC surface layer independent of the temperature. In contrast, the percentage of semi-ionic fluorine in the form of CF groups directly bonded to the π-electron system of the carbon matrix increases significantly with temperature.

5.
Antibiotics (Basel) ; 13(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38391532

RESUMEN

Streptomycetes are known as producers of bioactive substances, particularly antibiotics. Streptomyces netropsis IMV Ac-5025 simultaneously produces different classes of antibiotics, including polyene compounds, phytohormones, and sterols, but the metabolic pathways involved in their biosynthesis are largely understudied. The aim of this work was to explore the biosynthesis of polyene antibiotics, sterols, and phytohormones when the producer is cultivated in a nutrient medium supplemented with exogenous ß-sitosterol. Gas chromatography and high-performance liquid chromatography were applied to analyze the spectrum of bioactive compounds. The obtained results demonstrated not only an increase in the accumulation of biomass but also polyene antibiotics, intracellular sterols, auxins, and cytokinins, when cultivating S. netropsis IMV Ac-5025 in a liquid medium with the addition of ß-sitosterol. The amount of biomass raised 1.5-2-fold, whilst the sum of polyene antibiotics increased 4.5-fold, sterols' sum (ergosterol, cholesterol, stigmasterol, ß-sitosterol, and 24-epibrassinolide) by 2.9-fold, auxins' sum (indole-3-acetic acid, indole-3-acetic acid hydrazide, indole-3-carbinol, indole-3-butyric acid, indole-3-carboxaldehyde, and indole-3-carboxylic acid) by 6-fold, and cytokinins' sum (zeatin, isopentyladenine, zeatin riboside, and isopentenyladenosine) by 11-fold. Thus, we put forward the hypothesis that ß-sitosterol plays a regulatory role in the network of biosynthetic reactions of S. netropsis IMV Ac-5025.

6.
Adv Appl Bioinform Chem ; 16: 93-102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560149

RESUMEN

Introduction: Heterocyclic compounds have diverse biological activities and potential in drug development. This study aims to synthesize novel compounds with two 1,2,4-triazole cores and evaluate their biological properties, particularly their inhibitory activity against thymidine phosphorylase (TP), an enzyme involved in various physiological processes. Methods: The compounds were synthesized by reacting 5,5'-butane-bis-1,2,4-triazole derivatives with prenyl bromide. Characterization involved various techniques, including spectroscopy and elemental analysis. Antimicrobial potential was evaluated against bacteria and fungi, with comparative antibiotics as references. Inhibitory activity against TP was assessed, and molecular docking studies were conducted. Results: Six compounds were successfully synthesized and their structures confirmed. The synthesized triazole derivatives exhibited high biological activity, with compounds 2 and 6 showing the most promising TP inhibition. Molecular docking studies revealed interactions between compound 2 and TP, involving nine amino acids. Discussion: The synthesis of novel compounds with two 1,2,4-triazole cores contributes significantly to bis-triazole research. These compounds have potential as anti-tumor agents due to their inhibitory activity against TP, a crucial enzyme in tumor growth and metastasis. Comparative evaluation against antibiotics highlights their potency. Docking results provide insights into their interactions with TP, supporting their potential as potent TP inhibitors. Further research should focus on evaluating their efficacy in biological models, understanding their mechanisms of action, and optimizing their activities. Conclusion: The synthesized compounds with two 1,2,4-triazole cores exhibit significant biological activity, including strong TP inhibition and broad-spectrum antimicrobial effects. These findings emphasize their potential as anti-tumor agents and the need for further exploration and optimization. Future research should focus on evaluating their efficacy in biological models, understanding their mechanisms of action, and developing more potent bis-triazole derivatives for drug discovery efforts. The combined results from assays and docking studies support the therapeutic potential of these compounds as anti-tumor agents.

7.
Plants (Basel) ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36616327

RESUMEN

The weed Solidago canadensis L. poses a global threat to the environment as it spreads uncontrollably on roadsides, in forests, fields, meadows, and farmland. Goldenrod emits toxic substances that suppress other plants on the site, displacing wild ones. Thus, goldenrod conquers huge areas very quickly. The use of herbicides and mechanical methods does not solve the problem of the spontaneous spread of goldenrod. On the other hand, many scientists consider goldenrod as a valuable source of biologically active substances: flavonoids, phenolic compounds, vitamins, etc. In this study, we consider Solidago plants as a promising, free (cheap), and renewable substrate for the production of methane gas. The goal of the study was to identify the main patterns of degradation of the Solidago canadensis L. plant by methane-producing and sulfate-reducing bacteria with methane gas production and simultaneous detoxification of toxic copper. The composition of the gas phase was monitored by gas chromatography. The pH and redox potential parameters were determined potentiometrically; metal concentrations were measured by photometry. The concentration of flavonoids, sugars and phenolic compounds in plant biomass was determined according to well-known protocols. As a result of the study, high efficiencies of methane degradation in the Solidago plant and copper detoxification were obtained. Methane yield has reached the value of 68.2 L kg-1 TS of Solidago canadensis L. biomass. The degradation coefficient (Kd) was also high at 21.4. The Cu(II) was effectively immobilized by methanogens and sulfate reducers during the goldenrod degradation at the initial concentrations of 500 mg L-1. Thus, a new method of beneficial application of invasive plants was presented. The result confirms the possibility of using methanogenic microorganisms to produce methane gas from invasive weeds and detoxification of toxic metals.

8.
Zootaxa ; 5141(5): 459-483, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36095777

RESUMEN

The first annotated checklist of Mecoptera of Ukraine is presented. Altogether, 11 species of scorpionflies are known with a confirmed or probable occurrence in Ukraine. This list is based on previously published data, as well as on recently collected materials and specimens housed in the collection of the State Museum of Natural History NAS Ukraine, Lviv. This collection belongs to the oldest one in Ukraine and comprises specimens collected by Jzef Dzidzielewicz, the founder of mecopteran investigations in Eastern Europe in the 19th and 20th centuries. For each listed species, its distribution in Ukraine is given together with notes on the history of investigations, and synonymies of the respective taxa. Detailed information on the distribution of selected species from the Red Book of Ukraine is presented.


Asunto(s)
Holometabola , Animales , Museos , Historia Natural , Ucrania
9.
J Environ Manage ; 280: 111702, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257179

RESUMEN

The present study is dedicated to development of improved method for determination of trace amounts of fluorides in natural waters which is based on the interaction of fluorides with ion associate (IA) of Al(III), salicylic aldehyde acylhydrazones (benzhydrazone (SABH) and 4-picolinhydrazone (SAPH)) and polymethine dye Astra Phloxine FF (AP). Comparison of analytical forms [Al(SABH)2]⋅AP and [Al(SAPH)2]⋅AP showed that the analytical system Al(III)-SAPH-AP is more effective, namely, a higher level of preconcentration of the analytical form is ensured by and extraction equilibrium is achieved faster. Based on the study, we propose a new, fast, simple, reliable, sensitive, and accurate method of the indirect UV-Vis-spectrophotometric determination of fluorides grounded on the interaction of fluorides with IA of Al(III), SAPH and AP with the utilization of vortex-assisted liquid-liquid microextraction (VALLME). The method is based on the discoloration of the microextract of IA of Al(III), SAPH and AP (Al-SAPH-AP) in presence of fluoride ions due to the formation of fluoride complexes of aluminum with higher stability. The effect of various factors has been studied. The optimal conditions of the UV-Vis-spectrophotometric determination of fluorides were defined as: pH 7.0-10.0, 1.0⋅10-6 mol⋅L-1 Al(III); 4.0⋅10-5 mol⋅L-1 SAPH; 1.0⋅10-6 mol⋅L-1 AP; λ = 560 nm. VALLME have been carried out in 250 µL of CCl4 at 20:1 vol ratios of aqueous and organic phases, with vortexing at 3000 rpm for 15 s followed by centrifugation at 2000 rpm for 2 min. The determination of fluorides is feasible in the presence of various interferences. The calibration curve shows the linear dependence in the range of 0.3-114 µg⋅L-1 of the fluorides concentration (R2 = 0.993) with the limit of detection of 0.086 µg⋅L-1 and the limit of determination of 0.284 µg⋅L-1. The accuracy of the proposed protocol of fluorides determination was verified towards a reference method on the samples of natural rivers waters (RSD 2.6-3.1%, recovery 98.3-101.4%).


Asunto(s)
Fluoruros , Microextracción en Fase Líquida , Ríos , Solventes , Espectrofotometría
10.
J Mol Model ; 24(6): 141, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855716

RESUMEN

A few different theoretical methods for assigning the partial atomic charges were benchmarked for calculation of the hydrophilic/lipophilic index (HLI). The coefficients were selected to produce the best correlation of the HLI values with the experimental octanol-water partition. Different parameters were checked in calculations of partial charges to get the best performance of the HLI values obtained. Thus, four partitioning schemes (Coulson, Mulliken, Merz-Kollman, Ford-Wang) were benchmarked for calculations of atomic charges with six semiempirical methods (AM1, PM3, RM1, PM6, PM6-D3H4, PM7). Moreover, five distinct types of partial atomic charges (Mulliken, Hirshfeld, Löwdin, CHELPG, NPA), obtained at the Hartree-Fock and DFT levels of theory with three basis sets, were tested for their ability to produce the HLI values with the best correlation to experimental logP coefficients of 50 mono-charged organic anions. In the case of the semiempirical methods, the best correlation between the HLI and logP values (the correlation coefficient r = 0.9216) was obtained with the AM1 Ford-Wang parametric electrostatic potential charges. The Mulliken and Coulson charges calculated with the PM7 method can be used as an alternative to AM1, with the r values of 0.9107 and 0.8984, respectively. In the case of the DFT, the PBE/def2-TZVP natural population analysis charges produce the best correlation (r = 0.9220). Nevertheless, in spite of a marginally lower performance (r = 0.9159), the NPA charges computed at the PBE/def2-SVP level are more robust and can be regarded as the optimum choice for calculating the HLI values. Graphical abstract The hydrophilic/lipophilic index (HLI).

11.
J Sci Food Agric ; 96(4): 1093-100, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25801092

RESUMEN

BACKGROUND: Anthocyanins, compounds that represent the major group of flavonoids in berries, are one of the most powerful natural antioxidants. The aim of this study was to evaluate biological activities and comparison of anthocyanin-rich extracts prepared from chokeberry (Aronia melanocarpa), elderberry (Sambucus nigra), bilberry (Vaccinium myrtillus) and blueberry (V. corymbosum) on the porcine intestinal epithelial IPEC-1 cell line. RESULTS: The IC50 values calculated in the antioxidant cell-based dichlorofluorescein assay (DCF assay) were 1.129 mg L(-1) for chokeberry, 1.081 mg L(-1) for elderberry, 2.561 mg L(-1) for bilberry and 2.965 mg L(-1) for blueberry, respectively. We found a significant negative correlation (P < 0.001) between cyanidin glycosides content and IC50 values. Moreover, extracts rich in cyanidin glycosides stimulated proliferation of IPEC-1 cells and did not have cytotoxic effect on cells at an equivalent in vivo concentration. CONCLUSIONS: We found that the chokeberry and elderberry extracts rich in cyanidin glycosides possess better antioxidant and anticytotoxic activities in comparison to blueberry or bilberry extracts with complex anthocyanin profiles.


Asunto(s)
Antocianinas/farmacología , Células Epiteliales/efectos de los fármacos , Frutas , Fitoterapia , Animales , Antocianinas/uso terapéutico , Arándanos Azules (Planta) , Línea Celular/efectos de los fármacos , Concentración 50 Inhibidora , Photinia , Sambucus , Porcinos , Vaccinium
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA