Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-477724

RESUMEN

The nucleoside analog remdesivir (RDV) is an FDA-approved antiviral for the treatment of SARS- CoV-2 infections, and as such it is critical to understand potential genetic determinants and barriers to RDV resistance. In this study, SARS-CoV-2 was subjected to 13 passages in cell culture with increasing concentrations of GS-441524, the parent nucleoside of RDV. At passage 13 the RDV resistance of the lineages ranged from 2.7-to 10.4-fold increase in EC50. Sequence analysis of the three lineage populations identified non-synonymous mutations in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I and C799F/R. Two of the three lineages encoded the S759A substitution at the RdRp Ser759-Asp-Asp active motif. In one lineage, the V792I substitution emerged first then combined with S759A. Introduction of the S759A and V792I substitutions at homologous nsp12 positions in viable isogenic clones of the betacoronavirus murine hepatitis virus (MHV) demonstrated their transferability across CoVs, up to 38-fold RDV resistance in combination, and a significant replication defect associated with their introduction. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a [~]10- fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, while nsp12-V792I diminished the UTP concentration needed to overcome the template-dependent inhibition associated with RDV. The in vitro selected substitutions here identified were rare or not detected in the >6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in various clinical settings. One Sentence SummarySARS-CoV-2 develops in vitro resistance to remdesivir by distinct and complementary mutations and mechanisms in the viral polymerase

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-160671

RESUMEN

Human coronaviruses are enveloped, positive-strand RNA viruses which cause respiratory diseases ranging in severity from the seasonal common cold to SARS and COVID-19. Of the 7 human coronaviruses discovered to date, 3 emergent and severe human coronavirus strains (SARS-CoV, MERS-CoV, and SARS-CoV-2) have recently jumped to humans in the last 20 years. The COVID-19 pandemic spawned by the emergence of SARS-CoV-2 in late 2019 has highlighted the importance for development of effective therapeutics to target emerging coronaviruses. Upon entry, the replicase genes of coronaviruses are translated and subsequently proteolytically processed by virus-encoded proteases. Of these proteases, nonstructural protein 5 (nsp5, Mpro, or 3CLpro), mediates the majority of these cleavages and remains a key drug target for therapeutic inhibitors. Efforts to develop nsp5 active-site inhibitors for human coronaviruses have thus far been unsuccessful, establishing the need for identification of other critical and conserved non-active-site regions of the protease. In this study, we describe the identification of an essential, conserved horseshoe-shaped region in the nsp5 interdomain loop (IDL) of mouse hepatitis virus (MHV), a common coronavirus replication model. Using site-directed mutagenesis and replication studies, we show that several residues comprising this horseshoe-shaped region either fail to tolerate mutagenesis or were associated with viral temperature-sensitivity. Structural modeling and sequence analysis of these sites in other coronaviruses, including all 7 human coronaviruses, suggests that the identified structure and sequence of this horseshoe regions is highly conserved and may represent a new, non-active-site regulatory region of the nsp5 (3CLpro) protease to target with coronavirus inhibitors. ImportanceIn December 2019, a novel coronavirus (SARS-CoV-2) emerged in humans and triggered a pandemic which has to date resulted in over 8 million confirmed cases of COVID-19 across more than 180 countries and territories (June 2020). SARS-CoV-2 represents the third emergent coronavirus in the past 20 years and the future emergence of new coronaviruses in humans remains certain. Critically, there remains no vaccine nor established therapeutics to treat cases of COVID-19. The coronavirus nsp5 protease is a conserved and indispensable virus-encoded enzyme which remains a key target for therapeutic design. However, past attempts to target the active site of nsp5 with inhibitors have failed stressing the need to identify new conserved non-active-site targets for therapeutic development. This study describes the discovery of a novel conserved structural region of the nsp5 protease of coronavirus mouse hepatitis virus (MHV) which may provide a new target for coronavirus drug development.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-145920

RESUMEN

A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here, we show that mRNA-1273 induces both potent neutralizing antibody and CD8 T cell responses and protects against SARS-CoV-2 infection in lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a Phase 2 clinical trial with a trajectory towards Phase 3 efficacy evaluation.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-064279

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 M). Weaker activity was observed in Vero E6 cells (EC50 = 1.65 M) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-057786

RESUMEN

Coronaviruses (CoVs) emerge as zoonoses and cause severe disease in humans, demonstrated by the SARS-CoV-2 (COVID-19) pandemic. RNA recombination is required during normal CoV replication for subgenomic mRNA (sgmRNA) synthesis and generates defective viral genomes (DVGs) of unknown function. However, the determinants and patterns of CoV recombination are unknown. Here, we show that divergent {beta}-CoVs SARS-CoV-2, MERS-CoV, and murine hepatitis virus (MHV) perform extensive RNA recombination in culture, generating similar patterns of recombination junctions and diverse populations of DVGs and sgmRNAs. We demonstrate that the CoV proofreading nonstructural protein (nsp14) 3-to-5 exoribonuclease (nsp14-ExoN) is required for normal CoV recombination and that its genetic inactivation causes significantly decreased frequency and altered patterns of recombination in both infected cells and released virions. Thus, nsp14-ExoN is a key determinant of both high fidelity CoV replication and recombination, and thereby represents a highly-conserved and vulnerable target for virus inhibition and attenuation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...