Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21258218

RESUMEN

Accurate assessment of SARS-CoV-2 immunity in the population is critical to evaluating vaccine efficacy and devising public health policies. Whilst the exact nature of effective immunity remains incompletely defined, SARS-CoV-2-specific T cell responses are a critical feature of the immune response that will likely form a key correlate of protection against COVID-19. Here, we developed and optimised a high-throughput whole blood-based assay to determine the T cell response associated with prior SARS-CoV-2 infection and/or vaccination amongst 156 healthy donors and 67 cancer patients. Following overnight in vitro stimulation with SARS-CoV-2-specific peptides, blood plasma samples were harvested and analysed for TH1-type effector cytokines (IFN-{gamma} and IL-2). Amongst healthy donors, highly significant differential IFN-{gamma}+/IL-2+ SARS-CoV-2-specific T cell responses were seen amongst vaccinated or previously infected COVID-19-positive individuals in comparison to unknown/naive individuals (P < 0.0001). IL-2 production from T cells in response to SARS-CoV-2 derived antigens was a highly predictive diagnostic assay (P < 0.0001; 96.0% sensitivity, 93.9% specificity); measurement of IFN-{gamma}+ SARS-CoV-2 specific T cell responses was equally effective at identifying asymptomatic (antibody and T cell positive) participants. A single dose of COVID-19 vaccine induced IFN-{gamma} and/or IL-2 SARS-CoV-2-specific T cell responses in 28/29 (96.6%) of healthy donors, reducing significantly to 27/56 (48.2%) when measured in cancer patients (P = 0.0003). Overall, this cost-effective standardisable test ensures accurate and comparable assessments of SARS-CoV-2-specific T cell responses amenable to widespread population immunity testing.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21251054

RESUMEN

Two dose mRNA vaccination provides excellent protection against SARS-CoV-2. However, there are few data on vaccine efficacy in elderly individuals above the age of 801. Additionally, new variants of concern (VOC) with reduced sensitivity to neutralising antibodies have raised fears for vulnerable groups. Here we assessed humoral and cellular immune responses following vaccination with mRNA vaccine BNT162b22 in elderly participants prospectively recruited from the community and younger health care workers. Median age was 72 years and 51% were females amongst 140 participants. Neutralising antibody responses after the first vaccine dose diminished with increasing age, with a marked drop in participants over 80 years old. Sera from participants below and above 80 showed significantly lower neutralisation potency against B.1.1.7, B.1.351 and P.1. variants of concern as compared to wild type. Those over 80 were more likely to lack any neutralisation against VOC compared to younger participants following first dose. The adjusted odds ratio for inadequate neutralisation activity against the B.1.1.7, P.1 and B.1.351 variant in the older versus younger age group was 4.3 (95% CI 2.0-9.3, p<0.001), 6.7 (95% CI 1.7-26.3, p=0.008) and 1.7 (95% CI 0.5-5.7, p=0.41). Binding IgG and IgA antibodies were lower in the elderly, as was the frequency of SARS-CoV-2 Spike specific B-memory cells. We observed a trend towards lower somatic hypermutation in participants with suboptimal neutralisation, and elderly participants demonstrated clear reduction in class switched somatic hypermutation, driven by the IgA1/2 isotype. SARS-CoV-2 Spike specific T-cell IFN{gamma} and IL-2 responses fell with increasing age, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high risk population that warrant specific measures in order to mitigate against vaccine failure, particularly where variants of concern are circulating.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21249840

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant now seen in 50 countries. It is unclear whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed immune responses following vaccination with mRNA-based vaccine BNT162b2. We measured neutralising antibody responses following a single immunization using pseudoviruses expressing the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses that were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera from some convalescent patients. Decreased B.1.1.7 neutralisation was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the Receptor Binding Motif (RBM) (5 out of 31), but not in neutralising mAbs binding outside the RBM. Introduction of the E484K mutation in a B.1.1.7 background to reflect newly emerging viruses in the UK led to a more substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...