Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181737

RESUMEN

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Asunto(s)
Genes Ligados a X , ARN Largo no Codificante , Cromosoma X , Animales , Femenino , Humanos , Masculino , Ratones , Silenciador del Gen , ARN Largo no Codificante/genética , Cromosoma X/genética , Células Madre Pluripotentes/metabolismo
3.
Cell ; 184(25): 6174-6192.e32, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34813726

RESUMEN

The lncRNA Xist forms ∼50 diffraction-limited foci to transcriptionally silence one X chromosome. How this small number of RNA foci and interacting proteins regulate a much larger number of X-linked genes is unknown. We show that Xist foci are locally confined, contain ∼2 RNA molecules, and nucleate supramolecular complexes (SMACs) that include many copies of the critical silencing protein SPEN. Aggregation and exchange of SMAC proteins generate local protein gradients that regulate broad, proximal chromatin regions. Partitioning of numerous SPEN molecules into SMACs is mediated by their intrinsically disordered regions and essential for transcriptional repression. Polycomb deposition via SMACs induces chromatin compaction and the increase in SMACs density around genes, which propagates silencing across the X chromosome. Our findings introduce a mechanism for functional nuclear compartmentalization whereby crowding of transcriptional and architectural regulators enables the silencing of many target genes by few RNA molecules.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Largo no Codificante/metabolismo , Cromosoma X/metabolismo , Animales , Línea Celular , Células Madre Embrionarias , Fibroblastos , Silenciador del Gen , Humanos , Ratones , Unión Proteica , Inactivación del Cromosoma X
4.
Cell ; 184(23): 5775-5790.e30, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34739832

RESUMEN

RNA, DNA, and protein molecules are highly organized within three-dimensional (3D) structures in the nucleus. Although RNA has been proposed to play a role in nuclear organization, exploring this has been challenging because existing methods cannot measure higher-order RNA and DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the spatial organization of RNA and DNA. These maps reveal higher-order RNA-chromatin structures associated with three major classes of nuclear function: RNA processing, heterochromatin assembly, and gene regulation. These data demonstrate that hundreds of ncRNAs form high-concentration territories throughout the nucleus, that specific RNAs are required to recruit various regulators into these territories, and that these RNAs can shape long-range DNA contacts, heterochromatin assembly, and gene expression. These results demonstrate a mechanism where RNAs form high-concentration territories, bind to diffusible regulators, and guide them into compartments to regulate essential nuclear functions.


Asunto(s)
Núcleo Celular/metabolismo , ARN/metabolismo , Animales , Núcleo Celular/efectos de los fármacos , Homólogo de la Proteína Chromobox 5/metabolismo , Cromosomas/metabolismo , ADN/metabolismo , ADN Satélite/metabolismo , Proteínas de Unión al ADN/metabolismo , Dactinomicina/farmacología , Femenino , Genoma , Células HEK293 , Heterocromatina/metabolismo , Humanos , Ratones , Modelos Biológicos , Familia de Multigenes , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Procesamiento Postranscripcional del ARN/genética , Empalme del ARN/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética/efectos de los fármacos
6.
Nature ; 587(7832): 145-151, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32908311

RESUMEN

Nuclear compartments have diverse roles in regulating gene expression, yet the molecular forces and components that drive compartment formation remain largely unclear1. The long non-coding RNA Xist establishes an intra-chromosomal compartment by localizing at a high concentration in a territory spatially close to its transcription locus2 and binding diverse proteins3-5 to achieve X-chromosome inactivation (XCI)6,7. The XCI process therefore serves as a paradigm for understanding how RNA-mediated recruitment of various proteins induces a functional compartment. The properties of the inactive X (Xi)-compartment are known to change over time, because after initial Xist spreading and transcriptional shutoff a state is reached in which gene silencing remains stable even if Xist is turned off8. Here we show that the Xist RNA-binding proteins PTBP19, MATR310, TDP-4311 and CELF112 assemble on the multivalent E-repeat element of Xist7 and, via self-aggregation and heterotypic protein-protein interactions, form a condensate1 in the Xi. This condensate is required for gene silencing and for the anchoring of Xist to the Xi territory, and can be sustained in the absence of Xist. Notably, these E-repeat-binding proteins become essential coincident with transition to the Xist-independent XCI phase8, indicating that the condensate seeded by the E-repeat underlies the developmental switch from Xist-dependence to Xist-independence. Taken together, our data show that Xist forms the Xi compartment by seeding a heteromeric condensate that consists of ubiquitous RNA-binding proteins, revealing an unanticipated mechanism for heritable gene silencing.


Asunto(s)
Silenciador del Gen , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas CELF1/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Inactivación del Cromosoma X/genética
7.
Genome Biol ; 19(1): 189, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404662

RESUMEN

BACKGROUND: The decline of hematopoietic stem cell (HSC) function upon aging contributes to aging-associated immune remodeling and leukemia pathogenesis. Aged HSCs show changes to their epigenome, such as alterations in DNA methylation and histone methylation and acetylation landscapes. We previously showed a correlation between high Cdc42 activity in aged HSCs and the loss of intranuclear epigenetic polarity, or epipolarity, as indicated by the specific distribution of H4K16ac. RESULTS: Here, we show that not all histone modifications display a polar localization and that a reduction in H4K16ac amount and loss of epipolarity are specific to aged HSCs. Increasing the levels of H4K16ac is not sufficient to restore polarity in aged HSCs and the restoration of HSC function. The changes in H4K16ac upon aging and rejuvenation of HSCs are correlated with a change in chromosome 11 architecture and alterations in nuclear volume and shape. Surprisingly, by taking advantage of knockout mouse models, we demonstrate that increased Cdc42 activity levels correlate with the repression of the nuclear envelope protein LaminA/C, which controls chromosome 11 distribution, H4K16ac polarity, and nuclear volume and shape in aged HSCs. CONCLUSIONS: Collectively, our data show that chromatin architecture changes in aged stem cells are reversible by decreasing the levels of Cdc42 activity, revealing an unanticipated way to pharmacologically target LaminA/C expression and revert alterations of the epigenetic architecture in aged HSCs.


Asunto(s)
Senescencia Celular , Cromatina , Epigénesis Genética , Células Madre Hematopoyéticas/fisiología , Lamina Tipo A/fisiología , Proteína de Unión al GTP cdc42/fisiología , Animales , Metilación de ADN , Femenino , Células Madre Hematopoyéticas/citología , Histonas/genética , Histonas/metabolismo , Ratones , Ratones Noqueados
8.
Epigenetics Chromatin ; 10(1): 39, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28784182

RESUMEN

BACKGROUND: The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. RESULTS: Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). CONCLUSIONS: Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed,' inactive state.


Asunto(s)
Cromatina/ultraestructura , Secuencias Reguladoras de Ácidos Nucleicos , Activación Transcripcional , Línea Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromatina/genética , Cromatina/metabolismo , Redes Reguladoras de Genes , Humanos , Hibridación Fluorescente in Situ/métodos , Imagen Individual de Molécula/métodos
9.
EMBO J ; 36(15): 2263-2279, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28645917

RESUMEN

Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA-based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate-specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome-wide mapping reveals that PWWP2A binds selectively to H2A.Z-containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C-terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z-specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Mitosis , Cresta Neural/embriología , Animales , Línea Celular , Humanos , Unión Proteica , Xenopus/embriología
10.
Nat Protoc ; 12(5): 1011-1028, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28406495

RESUMEN

3D structured illumination microscopy (3D-SIM) is the super-resolution technique of choice for multicolor volumetric imaging. Here we provide a validated sample preparation protocol for labeling nuclei of cultured mammalian cells, image acquisition and registration practices, and downstream image analysis of nuclear structures and epigenetic marks. Using immunostaining and replication labeling combined with image segmentation, centroid mapping and nearest-neighbor analyses in open-source environments, 3D maps of nuclear structures are analyzed in individual cells and normalized to fluorescence standards on the nanometer scale. This protocol fills an unmet need for the application of 3D-SIM to the technically challenging nuclear environment, and subsequent quantitative analysis of 3D nuclear structures and epigenetic modifications. In addition, it establishes practical guidelines and open-source solutions using ImageJ/Fiji and the TANGO plugin for high-quality and routinely comparable data generation in immunostaining experiments that apply across model systems. From sample preparation through image analysis, the protocol can be executed within one week.


Asunto(s)
Núcleo Celular , Imagenología Tridimensional/métodos , Iluminación , Microscopía/métodos , Animales
11.
Nat Protoc ; 12(5): 988-1010, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28406496

RESUMEN

Linear 2D- or 3D-structured illumination microscopy (SIM or3D-SIM, respectively) enables multicolor volumetric imaging of fixed and live specimens with subdiffraction resolution in all spatial dimensions. However, the reliance of SIM on algorithmic post-processing renders it particularly sensitive to artifacts that may reduce resolution, compromise data and its interpretations, and drain resources in terms of money and time spent. Here we present a protocol that allows users to generate high-quality SIM data while accounting and correcting for common artifacts. The protocol details preparation of calibration bead slides designed for SIM-based experiments, the acquisition of calibration data, the documentation of typically encountered SIM artifacts and corrective measures that should be taken to reduce them. It also includes a conceptual overview and checklist for experimental design and calibration decisions, and is applicable to any commercially available or custom platform. This protocol, plus accompanying guidelines, allows researchers from students to imaging professionals to create an optimal SIM imaging environment regardless of specimen type or structure of interest. The calibration sample preparation and system calibration protocol can be executed within 1-2 d.


Asunto(s)
Iluminación , Microscopía/métodos , Animales , Artefactos , Microscopía/instrumentación , Control de Calidad
12.
Methods Mol Biol ; 1411: 407-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27147056

RESUMEN

The discovery that the RNA guided bacterial endonuclease Cas9 can be harnessed to target and manipulate user-defined genomic sequences has greatly influenced the field of genome engineering. Interestingly, a catalytically dead Cas9 (dCas9) can be employed as a targeted DNA-binding platform to alter gene expression. By fusing this dCas9 to eGFP, we and others could show that the CRISPR/Cas9 system can be further expanded to label and trace genomic loci in living cells. We demonstrated that by exchanging the sgRNA, dCas9-eGFP could be specifically directed to various heterochromatic sequences within the nucleus. Here, we provide a basic protocol for this versatile tool and describe how to verify new dCas9-eGFP targets.


Asunto(s)
Sistemas CRISPR-Cas , Mapeo Cromosómico , Sitios Genéticos , Genoma , Animales , Células Cultivadas , Mapeo Cromosómico/métodos , Clonación Molecular , Expresión Génica , Marcación de Gen , Genes Reporteros , Hibridación Fluorescente in Situ , Ratones , Microscopía Fluorescente , ARN Guía de Kinetoplastida , Secuencias Repetitivas de Ácidos Nucleicos , Transfección
13.
Artículo en Inglés | MEDLINE | ID: mdl-26579212

RESUMEN

BACKGROUND: Previous studies of higher order chromatin organization in nuclei of mammalian species revealed both structural consistency and species-specific differences between cell lines and during early embryonic development. Here, we extended our studies to nuclear landscapes in the human myelopoietic lineage representing a somatic cell differentiation system. Our longterm goal is a search for structural features of nuclei, which are restricted to certain cell types/species, as compared to features, which are evolutionary highly conserved, arguing for their basic functional roles in nuclear organization. RESULTS: Common human hematopoietic progenitors, myeloid precursor cells, differentiated monocytes and granulocytes analyzed by super-resolution fluorescence microscopy and electron microscopy revealed profound differences with respect to global chromatin arrangements, the nuclear space occupied by the interchromatin compartment and the distribution of nuclear pores. In contrast, we noted a consistent organization in all cell types with regard to two co-aligned networks, an active (ANC) and an inactive (INC) nuclear compartment delineated by functionally relevant hallmarks. The ANC is enriched in active RNA polymerase II, splicing speckles and histone signatures for transcriptionally competent chromatin (H3K4me3), whereas the INC carries marks for repressed chromatin (H3K9me3). CONCLUSIONS: Our findings substantiate the conservation of the recently published ANC-INC network model of mammalian nuclear organization during human myelopoiesis irrespective of profound changes of the global nuclear architecture observed during this differentiation process. According to this model, two spatially co-aligned and functionally interacting active and inactive nuclear compartments (ANC and INC) pervade the nuclear space.

14.
FEBS Lett ; 589(20 Pt A): 2931-43, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26028501

RESUMEN

Recent methodological advancements in microscopy and DNA sequencing-based methods provide unprecedented new insights into the spatio-temporal relationships between chromatin and nuclear machineries. We discuss a model of the underlying functional nuclear organization derived mostly from electron and super-resolved fluorescence microscopy studies. It is based on two spatially co-aligned, active and inactive nuclear compartments (ANC and INC). The INC comprises the compact, transcriptionally inactive core of chromatin domain clusters (CDCs). The ANC is formed by the transcriptionally active periphery of CDCs, called the perichromatin region (PR), and the interchromatin compartment (IC). The IC is connected to nuclear pores and serves nuclear import and export functions. The ANC is the major site of RNA synthesis. It is highly enriched in epigenetic marks for transcriptionally competent chromatin and RNA Polymerase II. Marks for silent chromatin are enriched in the INC. Multi-scale cross-correlation spectroscopy suggests that nuclear architecture resembles a random obstacle network for diffusing proteins. An increased dwell time of proteins and protein complexes within the ANC may help to limit genome scanning by factors or factor complexes to DNA exposed within the ANC.


Asunto(s)
Núcleo Celular/ultraestructura , Cromatina/fisiología , Animales , Núcleo Celular/fisiología , Cromatina/ultraestructura , Reparación del ADN , Regulación de la Expresión Génica , Humanos , Transcripción Genética
15.
Nucleic Acids Res ; 43(17): e112, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26007658

RESUMEN

Any profound comprehension of gene function requires detailed information about the subcellular localization, molecular interactions and spatio-temporal dynamics of gene products. We developed a multifunctional integrase (MIN) tag for rapid and versatile genome engineering that serves not only as a genetic entry site for the Bxb1 integrase but also as a novel epitope tag for standardized detection and precipitation. For the systematic study of epigenetic factors, including Dnmt1, Dnmt3a, Dnmt3b, Tet1, Tet2, Tet3 and Uhrf1, we generated MIN-tagged embryonic stem cell lines and created a toolbox of prefabricated modules that can be integrated via Bxb1-mediated recombination. We used these functional modules to study protein interactions and their spatio-temporal dynamics as well as gene expression and specific mutations during cellular differentiation and in response to external stimuli. Our genome engineering strategy provides a versatile open platform for efficient generation of multiple isogenic cell lines to study gene function under physiological conditions.


Asunto(s)
Ingeniería Celular/métodos , Animales , Anticuerpos Monoclonales , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Expresión Génica , Sitios Genéticos , Genómica/métodos , Integrasas/genética , Integrasas/inmunología , Integrasas/metabolismo , Mutación , Ratas , Recombinación Genética
16.
Nucleus ; 6(1): 66-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25738644

RESUMEN

More than 20 mutations in the gene encoding A-type lamins (LMNA) cause progeria, a rare premature aging disorder. The major pathognomonic hallmarks of progeria cells are seen as nuclear deformations or blebs that are related to the redistribution of A- and B-type lamins within the nuclear lamina. However, the functional significance of these progeria-associated blebs remains unknown. We have carried out an analysis of the structural and functional consequences of progeria-associated nuclear blebs in dermal fibroblasts from a progeria patient carrying a rare point mutation p.S143F (C428T) in lamin A/C. These blebs form microdomains that are devoid of major structural components of the nuclear envelope (NE)/lamina including B-type lamins and nuclear pore complexes (NPCs) and are enriched in A-type lamins. Using laser capture microdissection and comparative genomic hybridization (CGH) analyses, we show that, while these domains are devoid of centromeric heterochromatin and gene-poor regions of chromosomes, they are enriched in gene-rich chromosomal regions. The active form of RNA polymerase II is also greatly enriched in blebs as well as nascent RNA but the nuclear co-activator SKIP is significantly reduced in blebs compared to other transcription factors. Our results suggest that the p.S143F progeria mutation has a severe impact not only on the structure of the lamina but also on the organization of interphase chromatin domains and transcription. These structural defects are likely to contribute to gene expression changes reported in progeria and other types of laminopathies.


Asunto(s)
Núcleo Celular/genética , Cromosomas Humanos/genética , Lamina Tipo B/deficiencia , Progeria/genética , Progeria/patología , Núcleo Celular/metabolismo , Niño , Femenino , Humanos , Lamina Tipo B/genética , Mutación , Transcripción Genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-25057298

RESUMEN

BACKGROUND: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). RESULTS: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an 'autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. CONCLUSIONS: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.

18.
Nucleus ; 5(2): 163-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637835

RESUMEN

Labeling and tracing of specific sequences in living cells has been a major challenge in studying the spatiotemporal dynamics of native chromatin. Here we repurposed the prokaryotic CRISPR/Cas adaptive immunity system to specifically detect endogenous genomic loci in mouse embryonic stem cells. We constructed a catalytically inactive version of the Cas9 endonuclease, fused it with eGFP (dCas9-eGFP) and co-expressed small guide RNAs (gRNAs) to target pericentric, centric, and telomeric repeats, which are enriched in distinct nuclear structures. With major satellite specific gRNAs we obtained a characteristic chromocenter (CC) pattern, while gRNAs targeting minor satellites and telomeres highlighted smaller foci coinciding with centromere protein B (CENP-B) and telomeric repeat-binding factor 2 (TRF2), respectively. DNA sequence specific labeling by gRNA/dCas9-eGFP complexes was directly shown with 3D-fluorescent in situ hybridization (3D-FISH). Structured illumination microscopy (3D-SIM) of gRNA/dCas9-eGFP expressing cells revealed chromatin ultrastructures and demonstrated the potential of this approach for chromatin conformation studies by super resolution microscopy. This programmable dCas9 labeling system opens new perspectives to study functional nuclear architecture.


Asunto(s)
Sistemas CRISPR-Cas , ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Hibridación Fluorescente in Situ/métodos , Animales , Secuencia de Bases , Supervivencia Celular , Cromosomas/genética , ADN/química , Sitios Genéticos/genética , Genómica , Proteínas Fluorescentes Verdes/genética , Ratones , Mitosis , Modelos Moleculares , Conformación de Ácido Nucleico
19.
Methods Mol Biol ; 950: 43-64, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23086869

RESUMEN

Fluorescence in situ hybridization on three-dimensionally preserved cells (3D-FISH) is an efficient tool to analyze the subcellular localization and spatial arrangement of targeted DNA sequences and RNA transcripts at the single cell level. 3D reconstructions from serial optical sections obtained by confocal laser scanning microscopy (CLSM) have long been considered the gold standard for 3D-FISH analyses. Recent super-resolution techniques circumvent the diffraction-limit of optical resolution and have defined a new state-of-the-art in bioimaging. Three-dimensional structured illumination microscopy (3D-SIM) represents one of these technologies. Notably, 3D-SIM renders an eightfold improved volumetric resolution over conventional imaging, and allows the simultaneous visualization of differently labeled target structures. These features make this approach highly attractive for the analysis of spatial relations and substructures of nuclear targets that escape detection by conventional light microscopy. Here, we focus on the application of 3D-SIM for the visualization of subnuclear 3D-FISH preparations. In comparison with conventional fluorescence microscopy, the quality of 3D-SIM data is dependent to a much greater extent on the optimal sample preparation, labeling and acquisition conditions. We describe typical problems encountered with super-resolution imaging of in situ hybridizations in mammalian tissue culture cells and provide optimized DNA-/(RNA)-FISH protocols including combinations with immunofluorescence staining (Immuno-FISH) and DNA replication labeling using click chemistry.


Asunto(s)
Imagenología Tridimensional/métodos , Hibridación Fluorescente in Situ/métodos , Iluminación/métodos , Microscopía/métodos , Animales , Forma del Núcleo Celular , ADN/metabolismo , Técnica del Anticuerpo Fluorescente , Indoles/metabolismo , Ratones , Desnaturalización de Ácido Nucleico , Coloración y Etiquetado , Fijación del Tejido , Uridina/metabolismo
20.
Hum Mol Genet ; 21(18): 4038-48, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22694955

RESUMEN

The Prader-Willi syndrome (PWS) region in 15q11q13 harbours a cluster of imprinted genes expressed from the paternal chromosome only. Whereas loss of function of the SNORD116 genes appears to be responsible for the major features of PWS, the role of the other genes is less clear. One of these genes is C15orf2, which has no orthologues in rodents, but appears to be under strong positive selection in primates. C15orf2 encodes a 1156 amino acid protein with six nuclear localisation sequences. By protein BLAST analysis and InterProScan signature recognition search, we found sequence similarity of C15orf2 to the nuclear pore complex (NPC) protein POM121. To determine whether C15orf2 is located at nuclear pores, we generated a stable cell line that inducibly expresses FLAG-tagged C15orf2 and performed immunocytochemical studies. We found that C15orf2 is present at the nuclear periphery, where it colocalizes with NPCs and nuclear lamins. At very high expression levels, we observed invaginations of the nuclear envelope. Extending these observations to three-dimensional structured illumination microscopy, which achieves an 8-fold improved volumetric resolution over conventional imaging, we saw that C15orf2 is located at the inner face of the nuclear envelope where it strongly associates with the NPC. In nuclear envelope isolation and fractionation experiments, we detected C15orf2 in the NPC and lamina fractions. These experiments for the first time demonstrate that C15orf2 is part of the NPC or its associated molecular networks. Based on our findings, we propose 'Nuclear pore associated protein 1' as the new name for C15orf2.


Asunto(s)
Impresión Genómica , Proteínas del Tejido Nervioso/genética , Síndrome de Prader-Willi/genética , Secuencia de Aminoácidos , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Anotación de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear , Análisis de Secuencia por Matrices de Oligonucleótidos , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Transcripción Genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...