Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Metab ; 140(3): 107707, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37883914

RESUMEN

PURPOSE: The NIH Undiagnosed Diseases Program (UDP) aims to provide diagnoses to patients who have previously received exhaustive evaluations yet remain undiagnosed. Patients undergo procedural anesthesia for deep phenotyping for analysis with genomic testing. METHODS: A retrospective chart review was performed to determine the safety and benefit of procedural anesthesia in pediatric patients in the UDP. Adverse perioperative events were classified as anesthesia-related complications or peri-procedural complications. The contribution of procedures performed under anesthesia to arriving at a diagnosis was also determined. RESULTS: From 2008 to 2020, 249 pediatric patients in the UDP underwent anesthesia for diagnostic procedures. The majority had a severe systemic disease (American Society for Anesthesiology status III, 79%) and/or a neurologic condition (91%). Perioperative events occurred in 45 patients; six of these were attributed to anesthesia. All patients recovered fully without sequelae. Nearly half of the 249 patients (49%) received a diagnosis, and almost all these diagnoses (88%) took advantage of information gleaned from procedures performed under anesthesia. CONCLUSIONS: The benefits of anesthesia involving multiple diagnostic procedures in a well-coordinated, multidisciplinary, research setting, such as in the pediatric UDP, outweigh the risks.


Asunto(s)
Anestesia , Anestesiología , Enfermedades no Diagnosticadas , Niño , Humanos , Estados Unidos/epidemiología , Enfermedades no Diagnosticadas/etiología , Estudios Retrospectivos , Anestesia/efectos adversos , Medición de Riesgo , Uridina Difosfato
2.
Hum Mutat ; 33(4): 599-608, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22290882

RESUMEN

The Undiagnosed Diseases Program at the National Institutes of Health uses high-throughput sequencing (HTS) to diagnose rare and novel diseases. HTS techniques generate large numbers of DNA sequence variants, which must be analyzed and filtered to find candidates for disease causation. Despite the publication of an increasing number of successful exome-based projects, there has been little formal discussion of the analytic steps applied to HTS variant lists. We present the results of our experience with over 30 families for whom HTS sequencing was used in an attempt to find clinical diagnoses. For each family, exome sequence was augmented with high-density SNP-array data. We present a discussion of the theory and practical application of each analytic step and provide example data to illustrate our approach. The article is designed to provide an analytic roadmap for variant analysis, thereby enabling a wide range of researchers and clinical genetics practitioners to perform direct analysis of HTS data for their patients and projects.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Exoma , Familia , Variación Genética , Humanos
3.
Blood ; 116(23): 4990-5001, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-20709904

RESUMEN

Gray platelet syndrome (GPS) is an inherited bleeding disorder characterized by macrothrombocytopenia and absence of platelet α-granules resulting in typical gray platelets on peripheral smears. GPS is associated with a bleeding tendency, myelofibrosis, and splenomegaly. Reports on GPS are limited to case presentations. The causative gene and underlying pathophysiology are largely unknown. We present the results of molecular genetic analysis of 116 individuals including 25 GPS patients from 14 independent families as well as novel clinical data on the natural history of the disease. The mode of inheritance was autosomal recessive (AR) in 11 and indeterminate in 3 families. Using genome-wide linkage analysis, we mapped the AR-GPS gene to a 9.4-Mb interval on 3p21.1-3p22.1, containing 197 protein-coding genes. Sequencing of 1423 (69%) of the 2075 exons in the interval did not identify the GPS gene. Long-term follow-up data demonstrated the progressive nature of the thrombocytopenia and myelofibrosis of GPS resulting in fatal hemorrhages in some patients. We identified high serum vitamin B(12) as a consistent, novel finding in GPS. Chromosome 3p21.1-3p22.1 has not been previously linked to a platelet disorder; identification of the GPS gene will likely lead to the discovery of novel components of platelet organelle biogenesis. This study is registered at www.clinicaltrials.gov as NCT00069680 and NCT00369421.


Asunto(s)
Cromosomas Humanos Par 3/genética , Síndrome de Plaquetas Grises/genética , Síndrome de Plaquetas Grises/fisiopatología , Adolescente , Adulto , Plaquetas/ultraestructura , Separación Celular , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Citometría de Flujo , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Síndrome de Plaquetas Grises/sangre , Humanos , Masculino , Repeticiones de Microsatélite , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Neutrófilos/ultraestructura , Linaje , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Vitamina B 12/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...