Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 20(1): 63, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32204692

RESUMEN

BACKGROUND: The Gram-positive facultative methylotrophic bacterium Bacillus methanolicus uses the sedoheptulose-1,7-bisphosphatase (SBPase) variant of the ribulose monophosphate (RuMP) cycle for growth on the C1 carbon source methanol. Previous genome sequencing of the physiologically different B. methanolicus wild-type strains MGA3 and PB1 has unraveled all putative RuMP cycle genes and later, several of the RuMP cycle enzymes of MGA3 have been biochemically characterized. In this study, the focus was on the characterization of the transaldolase (Ta) and its possible role in the RuMP cycle in B. methanolicus. RESULTS: The Ta genes of B. methanolicus MGA3 and PB1 were recombinantly expressed in Escherichia coli, and the gene products were purified and characterized. The PB1 Ta protein was found to be active as a homodimer with a molecular weight of 54 kDa and displayed KM of 0.74 mM and Vmax of 16.3 U/mg using Fructose-6 phosphate as the substrate. In contrast, the MGA3 Ta gene, which encodes a truncated Ta protein lacking 80 amino acids at the N-terminus, showed no Ta activity. Seven different mutant genes expressing various full-length MGA3 Ta proteins were constructed and all gene products displayed Ta activities. Moreover, MGA3 cells displayed Ta activities similar as PB1 cells in crude extracts. CONCLUSIONS: While it is well established that B. methanolicus can use the SBPase variant of the RuMP cycle this study indicates that B. methanolicus possesses Ta activity and may also operate the Ta variant of the RuMP.


Asunto(s)
Bacillus/enzimología , Mutación , Transaldolasa/química , Transaldolasa/metabolismo , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Peso Molecular , Pentosas/metabolismo , Fosfatos/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transaldolasa/genética
2.
BMC Microbiol ; 14: 7, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24405865

RESUMEN

BACKGROUND: Transketolase (TKT) is a key enzyme of the pentose phosphate pathway (PPP), the Calvin cycle and the ribulose monophosphate (RuMP) cycle. Bacillus methanolicus is a facultative RuMP pathway methylotroph. B. methanolicus MGA3 harbors two genes putatively coding for TKTs; one located on the chromosome (tkt(C)) and one located on the natural occurring plasmid pBM19 (tkt(P)). RESULTS: Both enzymes were produced in recombinant Escherichia coli, purified and shown to share similar biochemical parameters in vitro. They were found to be active as homotetramers and require thiamine pyrophosphate for catalytic activity. The inactive apoform of the TKTs, yielded by dialysis against buffer containing 10 mM EDTA, could be reconstituted most efficiently with Mn(2+) and Mg(2+). Both TKTs were thermo stable at physiological temperature (up to 65°C) with the highest activity at neutral pH. Ni(2+), ATP and ADP significantly inhibited activity of both TKTs. Unlike the recently characterized RuMP pathway enzymes fructose 1,6-bisphosphate aldolase (FBA) and fructose 1,6-bisphosphatase/sedoheptulose 1,7-bisphosphatase (FBPase/SBPase) from B. methanolicus MGA3, both TKTs exhibited similar kinetic parameters although they only share 76% identical amino acids. The kinetic parameters were determined for the reaction with the substrates xylulose 5-phosphate (TKT(C): kcat/KM: 264 s(-1) mM(-1); TKT(P): kcat/KM: 231 s(-1) mM) and ribulose 5-phosphate (TKT(C): kcat/KM: 109 s(-1) mM; TKT(P): kcat/KM: 84 s(-1) mM) as well as for the reaction with the substrates glyceraldehyde 3-phosphate (TKT(C): kcat/KM: 108 s(-1) mM; TKT(P): kcat/KM: 71 s(-1) mM) and fructose 6-phosphate (TKT(C) kcat/KM: 115 s(-1) mM; TKT(P): kcat/KM: 448 s(-1) mM). CONCLUSIONS: Based on the kinetic parameters no major TKT of B. methanolicus could be determined. Increased expression of tkt(P), but not of tkt(C) during growth with methanol [J Bacteriol 188:3063-3072, 2006] argues for TKT(P) being the major TKT relevant in the RuMP pathway. Neither TKT exhibited activity as dihydroxyacetone synthase, as found in methylotrophic yeast, or as the evolutionary related 1-deoxyxylulose-5-phosphate synthase. The biological significance of the two TKTs for B. methanolicus methylotrophy is discussed.


Asunto(s)
Bacillus/enzimología , Bacillus/metabolismo , Transcetolasa/genética , Transcetolasa/metabolismo , Secuencia de Aminoácidos , Bacillus/genética , Cromosomas Bacterianos , Clonación Molecular , Coenzimas/metabolismo , Activadores de Enzimas/metabolismo , Inhibidores Enzimáticos/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Magnesio/metabolismo , Manganeso/metabolismo , Metanol/metabolismo , Datos de Secuencia Molecular , Plásmidos , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ribulosafosfatos/metabolismo , Temperatura , Tiamina Pirofosfato/metabolismo , Transcetolasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...