Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(4): 551-563, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36959263

RESUMEN

The adipokine Leptin activates its receptor LEP-R in the hypothalamus to regulate body weight and exerts additional pleiotropic functions in immunity, fertility and cancer. However, the structure and mechanism of Leptin-mediated LEP-R assemblies has remained unclear. Intriguingly, the signaling-competent isoform of LEP-R is only lowly abundant amid several inactive short LEP-R isoforms contributing to a mechanistic conundrum. Here we show by X-ray crystallography and cryo-EM that, in contrast to long-standing paradigms, Leptin induces type I cytokine receptor assemblies featuring 3:3 stoichiometry and demonstrate such Leptin-induced trimerization of LEP-R on living cells via single-molecule microscopy. In mediating these assemblies, Leptin undergoes drastic restructuring that activates its site III for binding to the Ig domain of an adjacent LEP-R. These interactions are abolished by mutations linked to obesity. Collectively, our study provides the structural and mechanistic framework for how evolutionarily conserved Leptin:LEP-R assemblies with 3:3 stoichiometry can engage distinct LEP-R isoforms to achieve signaling.


Asunto(s)
Adipoquinas , Leptina , Leptina/genética , Leptina/metabolismo , Leptina/farmacología , Isoformas de Proteínas/genética , Transducción de Señal
2.
Nature ; 605(7910): 551-560, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332283

RESUMEN

The design of proteins that bind to a specific site on the surface of a target protein using no information other than the three-dimensional structure of the target remains a challenge1-5. Here we describe a general solution to this problem that starts with a broad exploration of the vast space of possible binding modes to a selected region of a protein surface, and then intensifies the search in the vicinity of the most promising binding modes. We demonstrate the broad applicability of this approach through the de novo design of binding proteins to 12 diverse protein targets with different shapes and surface properties. Biophysical characterization shows that the binders, which are all smaller than 65 amino acids, are hyperstable and, following experimental optimization, bind their targets with nanomolar to picomolar affinities. We succeeded in solving crystal structures of five of the binder-target complexes, and all five closely match the corresponding computational design models. Experimental data on nearly half a million computational designs and hundreds of thousands of point mutants provide detailed feedback on the strengths and limitations of the method and of our current understanding of protein-protein interactions, and should guide improvements of both. Our approach enables the targeted design of binders to sites of interest on a wide variety of proteins for therapeutic and diagnostic applications.


Asunto(s)
Proteínas Portadoras , Proteínas , Aminoácidos/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Unión Proteica , Proteínas/química
3.
Biol Chem ; 403(2): 243-249, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34699696

RESUMEN

Thymic stromal lymphopoietin (TSLP) is a pro-inflammatory cytokine with important pathological roles in Asthma bronchiale, malignant tumours and other diseases. The heterodimeric human TSLP receptor (hTSLPR) consists of the TSLP-binding subunit (TSLPRα) and the IL-7Rα-subunit. We studied the properties of hTSLP variants with mutations in their bipartite interaction interface towards IL-7Rα. One mutant (T46D/K101D) showed only mild impairment in receptor affinity but a massive reduction in biological activity. To facilitate the future development of hTSLP mutants with drug properties, we have devised a eukaryontic cytokine display assay with activity read-out and intrinsic genotype-phenotype coupling.


Asunto(s)
Citocinas , Receptores de Citocinas , Citocinas/química , Humanos , Subunidad alfa del Receptor de Interleucina-7 , Dominios Proteicos , Receptores de Citocinas/genética , Linfopoyetina del Estroma Tímico
4.
Viruses ; 13(8)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452532

RESUMEN

Human papillomavirus type 159 (HPV159) was identified in an anal swab sample and preliminarily genetically characterized by our group in 2012. Here we present a detailed molecular in silico analysis that showed that the HPV159 viral genome is 7443 bp in length and divided into five early and two late genes, with conserved functional domains and motifs, and a non-coding long control region (LCR) with significant regulatory sequences that allow the virus to complete its life cycle and infect novel host cells. HPV159, clustering into the cutaneotropic Betapapillomavirus (Beta-PV) genus, is phylogenetically most similar to HPV9, forming an individual phylogenetic group in the viral species Beta-2. After testing a large representative collection of clinical samples with HPV159 type-specific RT-PCR, in addition to the anal canal from which the first HPV159 isolate was obtained, HPV159 was further detected in other muco-cutaneous (4/181, 2.2%), mucosal (22/764, 2.9%), and cutaneous (14/554, 2.5%) clinical samples, suggesting its extensive tissue tropism. However, because very low HPV159 viral loads were estimated in the majority of positive samples, it seemed that HPV159 mainly caused clinically insignificant infections of the skin and mucosa. Using newly developed, highly sensitive HPV159-specific nested PCRs, two additional HPV159 LCR viral variants were identified. Nevertheless, all HPV159 mutations were demonstrated outside important functional domains of the LCR, suggesting that the HPV159 viral variants were most probably not pathogenically different. This complete molecular characterization of HPV159 enhances our knowledge of the genome characteristics, tissue tropism, and phylogenetic diversity of Beta-PVs that infect humans.


Asunto(s)
Papillomaviridae/genética , Infecciones por Papillomavirus/virología , Genoma Viral , Humanos , Papillomaviridae/clasificación , Papillomaviridae/aislamiento & purificación , Papillomaviridae/fisiología , Filogenia , Carga Viral , Proteínas Virales/genética
5.
Front Immunol ; 11: 1557, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849527

RESUMEN

Thymic Stromal Lymphopoietin (TSLP) and Interleukin-7 (IL-7) are widely studied cytokines within distinct branches of immunology. On one hand, TSLP is crucially important for mediating type 2 immunity at barrier surfaces and has been linked to widespread allergic and inflammatory diseases of the airways, skin, and gut. On the other hand, IL-7 operates at the foundations of T-cell and innate lymphoid cell (ILC) development and homeostasis and has been associated with cancer. Yet, TSLP and IL-7 are united by key commonalities in their structure and the structural basis of the receptor assemblies they mediate to initiate cellular signaling, in particular their cross-utilization of IL-7Rα. As therapeutic targeting of TSLP and IL-7 via diverse approaches is reaching advanced stages and in light of the plethora of mechanistic and structural data on receptor signaling mediated by the two cytokines, the time is ripe to provide integrated views of such knowledge. Here, we first discuss the major pathophysiological roles of TSLP and IL-7 in autoimmune diseases, inflammation and cancer. Subsequently, we curate structural and mechanistic knowledge about receptor assemblies mediated by the two cytokines. Finally, we review therapeutic avenues targeting TSLP and IL-7 signaling. We envision that such integrated view of the mechanism, structure, and modulation of signaling assemblies mediated by TSLP and IL-7 will enhance and fine-tune the development of more effective and selective approaches to further interrogate the role of TSLP and IL-7 in physiology and disease.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Interleucina-7/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Animales , Enfermedades Autoinmunes/etiología , Citocinas/química , Citocinas/genética , Susceptibilidad a Enfermedades , Variación Genética , Humanos , Inflamación/etiología , Interleucina-7/química , Interleucina-7/genética , Neoplasias/etiología , Receptores de Citocinas/química , Receptores de Citocinas/metabolismo , Receptores de Interleucina-7/química , Receptores de Interleucina-7/metabolismo , Relación Estructura-Actividad
6.
Cytokine ; 113: 228-237, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30033138

RESUMEN

Cytokines and growth factors are signaling proteins involved in communication processes between cells. They are involved in the control of numerous essential physiological processes such as cell proliferation, gene transcription and differentiation; therefore being in the focus of basic and applied research. Many of them are also of relevance for human diseases. When observed as potential targets for pharmacological intervention and objects of structure/function studies, it is important to measure their biological activities, optionally along with potential inhibitors, in a convenient and rational manner. Such tests are frequently laborious to set up and their establishment is complicated by the necessity to employ problematic cell types and sophisticated assays. Here we present a robust and modular activity assay system which can be adapted to virtually all ligands that signal through dimerization of membrane receptors from different families. The technique rests on fusing ligand-binding domains of specific receptors to the transmembrane and intracellular components of the thymic stromal lymphopoietin (TSLP) receptor which translates signals into readily quantifiable luciferase expression in reporter cells. We show that the activation of various hematopoietic cytokine receptors, of receptor tyrosine kinases as well as of receptors bearing serine/threonine kinase domains by their respective ligands was faithfully reflected both upon transient and stable introduction of hybrid receptor and reporter gene constructs into the murine pro-B cell line Ba/F3. Moreover, we demonstrate the suitability of this platform for the functional characterization of cytokine/growth factor receptor inhibitors.


Asunto(s)
Bioensayo , Citocinas/análisis , Inmunoglobulinas/metabolismo , Multimerización de Proteína , Receptores de Citocinas/metabolismo , Animales , Células HEK293 , Humanos , Inmunoglobulinas/genética , Ratones , Receptores de Citocinas/genética
7.
J Microbiol Biotechnol ; 23(9): 1244-52, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23851274

RESUMEN

Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 g/l·h, respectively.


Asunto(s)
Beta vulgaris/microbiología , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Beta vulgaris/química , Beta vulgaris/metabolismo , Biocombustibles/análisis , Reactores Biológicos/microbiología , Fermentación , Hidrólisis , Residuos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...