Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 200: 379-395, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28640319

RESUMEN

In many parts of the world, the implementation of air quality regulations has led to significant decreases in SO2 emissions with minimal impact on NH3 emissions. In Canada and the United States, the molar ratio of NH3 : SO2 emissions has increased dramatically between 1990 and 2014. In many regions of North America, this will lead the molar ratio of NHx : SO4, where NHx is the sum of particle phase NH4+ and gas phase NH3, and SO4 is the sum of particle phase HSO4- and SO42-, to exceed 2. A thermodynamic model (E-AIM model II) is used to investigate the sensitivity of particle pH, and the gas-particle partitioning of NHx and inorganic nitrate, to the atmospheric NHx : SO4 ratio. Steep increases in pH and the gas fraction of NHx are found as NHx : SO4 varies from below 1 to above 2. The sensitivity of the gas fraction of nitrate also depends strongly on temperature. The results show that if NHx : SO4 exceeds 2, and the gas and particle phase NHx are in equilibrium, the particle pH will be above 2. Observations of the composition of particulate matter and gas phase NH3 from two field campaigns in southern Canada in 2007 and 2012 have median NHx : SO4 ratios of 3.8 and 25, respectively. These campaigns exhibited similar amounts of NH3, but very different particle phase loadings. Under these conditions, the pH values calculated using the observations as input to the E-AIM model were in the range of 1-4. The pH values were typically higher at night because the higher relative humidity increased the particle water content, diluting the acidity. The assumption of equilibration between the gas and particle phase NHx was evaluated by comparing the observed and modelled gas fraction of NHx. In general, E-AIM was able to reproduce the partitioning well, suggesting that the dominant constituents contributing to particle acidity were measured, and that the estimated pH values were realistic. These results suggest that regions of the world where the ratio of NH3 : SO2 emissions is beginning to exceed 2 on a molar basis may be experiencing rapid increases in aerosol pH of 1-3 pH units. This could have important consequences for the rates of condensed phase reactions that are acid-catalyzed.

2.
Atmos Meas Tech ; 9(7): 3063-3093, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29619117

RESUMEN

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

3.
J Chromatogr A ; 1252: 74-83, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22784696

RESUMEN

Two methods based on ion chromatography (IC) were developed for the detection of methyl and ethyl alkyl amines (methylamine (MA), ethylamine (EA), dimethylamine (DMA), diethylamine (DEA), trimethylamine (TMA) and triethylamine (TEA)) and NH(3)/NH(4)(+) in online atmospheric gas-particle and size-resolved particulate samples. The two IC methods were developed to analyze samples collected with an ambient ion monitor (AIM), an online gas-particle collection system, or with a Micro Orifice Uniform Deposit Impactor (MOUDI) for size-resolved particle samples. These methods enable selective and (semi-) quantitative detection of alkyl amines at ambient atmospheric concentrations (pptv and pgm(-3)) in samples where significant interferences can be expected from Na(+) and NH(4)(+), for example marine and rural air masses. Sample pre-concentration using a trace cation column enabled instrumental detection limits on the order of pmol (sub-ng) levels per sample, an improvement of up to 10(2) over current IC methods. Separation was achieved using a methanesulfonic acid gradient elution on Dionex CS12A and CS17 columns. The relative standard deviations in retention times during 3 weeks continuous (hourly) sampling campaigns ranged from 0.1 to 0.5% and 0.2 to 5% for the CS12A and CS17 across a wide dynamic range of atmospheric concentrations. Resolution of inorganic and organic cations is limited to 25min for online samples. Mass-dependent coelution of NH(4)(+)/MA/EA occurred on the CS12A column and DEA/TMA coeluted on both columns. Calibrations of ammonium show a non-linear response across the entire calibration range while all other analytes exhibit high linearity (R(2)=0.984-0.999), except for EA and TEA on the CS12A (R(2)=0.960 and 0.941, respectively). Both methods have high analytical accuracy for the nitrogenous bases ranging from 9.5 to 20% for NH(3) and <5-15% for the amines. Hourly observations of amines at Egbert, ON in October 2010 showed gaseous DMA and TMA+DEA at 1-10pptv in air, while particulate DMA and TMA+DEA were present at 0.5-4ng m(-3). A size-resolved particulate sample collected over 23h was found to contain DMA, TMA+DEA and MEA at 1.78, 8.15 and 0.03ngm(-3) mass loadings, with the amine mass enhanced in particle sizes between 100 and 1000nm. These results highlight a need for very sensitive and selective detection of methyl and ethyl amines in addition to NH(3) in continuous online monitoring strategies.


Asunto(s)
Aire/análisis , Cromatografía por Intercambio Iónico/métodos , Etilaminas/aislamiento & purificación , Metilaminas/aislamiento & purificación , Material Particulado/química , Conductividad Eléctrica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...