Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Geophys Res Atmos ; 127(9): 1-16, 2022 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35586832

RESUMEN

Gas phase hydrogen chloride (HCl) was measured at Pasadena and San Joaquin Valley (SJV) ground sites in California during May and June 2010 as part of the CalNex study. Observed mixing ratios were on average 0.83 ppbv at Pasadena, ranging from below detection limit (0.055 ppbv) to 5.95 ppbv, and were on average 0.084 ppbv at SJV with a maximum value of 0.776 ppbv. At both sites, HCl levels were highest during midday and shared similar diurnal variations with HNO3. Coupled phase partitioning behavior was found between HCl/Cl- and HNO3/NO3 - using thermodynamic modelling and observations. Regional modeling of Cl- and HCl using CMAQ captures some of the observed relationships but underestimates measurements by a factor of 5 or more. Chloride in the 2.5-10 µm size range in Pasadena was sometimes higher than sea salt abundances, based on co-measured Na+, implying that sources other than sea salt are important. The acid-displacement of HCl/Cl- by HNO3/NO3 - (phase partitioning of semi-volatile acids) observed at the SJV site can only be explained by aqueous phase reaction despite low RH conditions and suggests the temperature dependence of HCl phase partitioning behavior was strongly impacted by the activity coefficient changes under relevant aerosol conditions (e.g., high ionic strength). Despite the influence from activity coefficients, the gas-particle system was found to be well constrained by other stronger buffers and charge balance so that HCl and Cl- concentrations were reproduced well by thermodynamic models.

2.
Environ Sci Technol ; 53(5): 2529-2538, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30698424

RESUMEN

Biomass burning (BB) is a large source of reactive compounds in the atmosphere. While the daytime photochemistry of BB emissions has been studied in some detail, there has been little focus on nighttime reactions despite the potential for substantial oxidative and heterogeneous chemistry. Here, we present the first analysis of nighttime aircraft intercepts of agricultural BB plumes using observations from the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign. We use these observations in conjunction with detailed chemical box modeling to investigate the formation and fate of oxidants (NO3, N2O5, O3, and OH) and BB volatile organic compounds (BBVOCs), using emissions representative of agricultural burns (rice straw) and western wildfires (ponderosa pine). Field observations suggest NO3 production was approximately 1 ppbv hr-1, while NO3 and N2O5 were at or below 3 pptv, indicating rapid NO3/N2O5 reactivity. Model analysis shows that >99% of NO3/N2O5 loss is due to BBVOC + NO3 reactions rather than aerosol uptake of N2O5. Nighttime BBVOC oxidation for rice straw and ponderosa pine fires is dominated by NO3 (72, 53%, respectively) but O3 oxidation is significant (25, 43%), leading to roughly 55% overnight depletion of the most reactive BBVOCs and NO2.


Asunto(s)
Atmósfera , Incendios , Aerosoles , Aeronaves , Biomasa
3.
Environ Sci Technol ; 49(21): 12774-81, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26436410

RESUMEN

Recent observations suggest a large and unknown daytime source of nitrous acid (HONO) to the atmosphere. Multiple mechanisms have been proposed, many of which involve chemistry that reduces nitrogen dioxide (NO2) on some time scale. To examine the NO2 dependence of the daytime HONO source, we compare weekday and weekend measurements of NO2 and HONO in two U.S. cities. We find that daytime HONO does not increase proportionally to increases in same-day NO2, i.e., the local NO2 concentration at that time and several hours earlier. We discuss various published HONO formation pathways in the context of this constraint.


Asunto(s)
Atmósfera/química , Dióxido de Nitrógeno/análisis , Ácido Nitroso/análisis , California , Ciudades , Fluorescencia , Propiedades de Superficie , Factores de Tiempo
4.
Environ Sci Technol ; 47(8): 3781-7, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23448102

RESUMEN

In situ measurements of organic compounds in both gas and particle phases were made with a thermal desorption aerosol gas chromatography (TAG) instrument. The gas/particle partitioning of phthalic acid, pinonaldehyde, and 6,10,14-trimethyl-2-pentadecanone is discussed in detail to explore secondary organic aerosol (SOA) formation mechanisms. Measured fractions in the particle phase (f(part)) of 6,10,14-trimethyl-2-pentadecanone were similar to those expected from the absorptive gas/particle partitioning theory, suggesting that its partitioning is dominated by absorption processes. However, f(part) of phthalic acid and pinonaldehyde were substantially higher than predicted. The formation of low-volatility products from reactions of phthalic acid with ammonia is proposed as one possible mechanism to explain the high f(part) of phthalic acid. The observations of particle-phase pinonaldehyde when inorganic acids were fully neutralized indicate that inorganic acids are not required for the occurrence of reactive uptake of pinonaldehyde on particles. The observed relationship between f(part) of pinonaldehyde and relative humidity suggests that the aerosol water plays a significant role in the formation of particle-phase pinonaldehyde. Our results clearly show it is necessary to include multiple gas/particle partitioning pathways in models to predict SOA and multiple SOA tracers in source apportionment models to reconstruct SOA.


Asunto(s)
Aerosoles/análisis , Gases/análisis , Compuestos Orgánicos/análisis , Material Particulado/análisis , Aldehídos , Aniones/análisis , Carbono/análisis , Cationes/análisis , Cromatografía de Gases , Ciclobutanos , Cetonas/análisis , Oxígeno/análisis , Ácidos Ftálicos , Factores de Tiempo , Presión de Vapor
5.
J Environ Monit ; 14(7): 1872-84, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22535486

RESUMEN

In this work we present the results of extensive characterization and optimization of the Ambient Ion Monitor-Ion Chromatograph (AIM-IC) system, an instrument developed by URG Corp. and Dionex Inc. for simultaneous hourly measurements of the water-soluble chemical composition of atmospheric fine particulate matter (PM(2.5)) and associated precursor gases. The sampling assembly of the AIM-IC consists of an inertial particle size-selection assembly, a parallel-plate wet denuder (PPWD) for the collection of soluble gases, and a particle supersaturation chamber (PSSC) for collection of particles, in series. The analytical assembly of the AIM-IC consists of anion and cation IC units. The system detection limits were determined to be 41 ppt, 5 ppt, and 65 ppt for gas phase NH(3(g)), SO(2(g)), and HNO(3(g)) and 29 ng m(-3), 3 ng m(-3), and 45 ng m(-3) for particle phase NH(4)(+), SO(4)(2-), and NO(3)(-) respectively. From external trace gas calibrations with permeation sources, we determined that the AIM-IC is biased low for NH(3(g)) (11%), SO(2(g)) (19%), and HNO(3(g)) (12%). The collection efficiency of SO(2(g)) was found to strongly depend on the composition of the denuder solution and was found to be the most quantitative with 5 mM H(2)O(2) solution for mixing ratios as high as 107 ppb. Using a cellulose membrane in the PPWD, the system responded to changes in SO(2(g)) and HNO(3(g)) within an hour, however for NH(3(g)), the timescale can be closer to 20 h. With a nylon membrane, the instrument response time for NH(3(g)) was significantly improved, becoming comparable to the responses for SO(2(g)) and HNO(3(g)). Performance of the AIM-IC for collection and analysis of PM(2.5) was evaluated by generating known number concentrations of ammonium sulfate and ammonium nitrate particles (with an aerodynamic diameter of 300 nm) under laboratory conditions and by comparing AIM-IC measurements to measurements from a collocated Aerosol Mass Spectrometer (AMS) during a field-sampling campaign. On average, the AIM-IC and AMS measurements agreed well and captured rapid ambient concentration changes at the same time. In this work we also present a novel inlet configuration and plumbing for the AIM-IC which minimizes sampling inlet losses, reduces peak smearing due to sample carryover, and allows for tower-height sampling from the base of a research tower.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/instrumentación , Sistemas en Línea , Material Particulado/análisis , Amoníaco/análisis , Atmósfera/química , Cromatografía , Monitoreo del Ambiente/métodos , Metano/análisis , Nitratos/análisis , Nitritos/análisis , Tamaño de la Partícula , Dióxido de Azufre/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...