Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Channels (Austin) ; 18(1): 2361416, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38836323

RESUMEN

Alterations in ion channel expression and function known as "electrical remodeling" contribute to the development of hypertrophy and to the emergence of arrhythmias and sudden cardiac death. However, comparing current density values - an electrophysiological parameter commonly utilized to assess ion channel function - between normal and hypertrophied cells may be flawed when current amplitude does not scale with cell size. Even more, common routines to study equally sized cells or to discard measurements when large currents do not allow proper voltage-clamp control may introduce a selection bias and thereby confound direct comparison. To test a possible dependence of current density on cell size and shape, we employed whole-cell patch-clamp recording of voltage-gated sodium and calcium currents in Langendorff-isolated ventricular cardiomyocytes and Purkinje myocytes, as well as in cardiomyocytes derived from trans-aortic constriction operated mice. Here, we describe a distinct inverse relationship between voltage-gated sodium and calcium current densities and cell capacitance both in normal and hypertrophied cells. This inverse relationship was well fit by an exponential function and may be due to physiological adaptations that do not scale proportionally with cell size or may be explained by a selection bias. Our study emphasizes the need to consider cell size bias when comparing current densities in cardiomyocytes of different sizes, particularly in hypertrophic cells. Conventional comparisons based solely on mean current density may be inadequate for groups with unequal cell size or non-proportional current amplitude and cell size scaling.


Asunto(s)
Cardiomegalia , Tamaño de la Célula , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Ratones , Masculino , Técnicas de Placa-Clamp
2.
Am J Physiol Heart Circ Physiol ; 326(2): H418-H425, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38099845

RESUMEN

Cardiac arrhythmias significantly contribute to mortality in Duchenne muscular dystrophy (DMD), a severe muscle illness caused by mutations in the gene encoding for the intracellular protein dystrophin. A major source for arrhythmia vulnerability in patients with DMD is impaired ventricular impulse conduction, which predisposes for ventricular asynchrony, decreased cardiac output, and the development of reentrant circuits. Using the dystrophin-deficient mdx mouse model for human DMD, we previously reported that the lack of dystrophin causes a significant loss of peak Na+ current (INa) in ventricular cardiomyocytes. This finding provided a mechanistic explanation for ventricular conduction defects and concomitant arrhythmias in the dystrophic heart. In the present study, we explored the hypothesis that empagliflozin (EMPA), an inhibitor of sodium/glucose cotransporter 2 in clinical use to treat type II diabetes and nondiabetic heart failure, rescues peak INa loss in dystrophin-deficient ventricular cardiomyocytes. We found that INa of cardiomyocytes derived from mdx mice, which had received clinically relevant doses of EMPA for 4 wk, was restored to wild-type level. Moreover, incubation of isolated mdx ventricular cardiomyocytes with 1 µM EMPA for 24 h significantly increased their peak INa. This effect was independent of Na+-H+ exchanger 1 inhibition by the drug. Our findings imply that EMPA treatment can rescue abnormally reduced peak INa of dystrophin-deficient ventricular cardiomyocytes. Long-term EMPA administration may diminish arrhythmia vulnerability in patients with DMD.NEW & NOTEWORTHY Dystrophin deficiency in cardiomyocytes leads to abnormally reduced Na+ currents. These can be rescued by long-term empagliflozin treatment.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2 , Glucósidos , Distrofia Muscular de Duchenne , Animales , Ratones , Humanos , Distrofina/genética , Ratones Endogámicos mdx , Miocitos Cardíacos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Distrofia Muscular de Duchenne/genética , Arritmias Cardíacas/metabolismo , Sodio/metabolismo , Modelos Animales de Enfermedad
3.
Physiol Rep ; 11(7): e15664, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37032434

RESUMEN

The muscular dystrophies caused by dystrophin deficiency, the so-called dystrophinopathies, are associated with impaired cardiac contractility and arrhythmias, which considerably contribute to disease morbidity and mortality. Impaired Ca handling in ventricular cardiomyocytes has been identified as a causative factor for complications in the dystrophic heart, and restoration of normal Ca handling in myocytes has emerged as a promising new therapeutic strategy. In the present study, we explored the hypothesis that ivabradine, a drug clinically approved for the treatment of heart failure and stable angina pectoris, improves Ca handling in dystrophic cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Therefore, ventricular cardiomyocytes were isolated from the hearts of adult dystrophin-deficient DMDmdx rats, and the effects of acutely applied ivabradine on intracellular Ca transients were tested. In addition, the drug's acute impact on cardiac function in DMDmdx rats was assessed by transthoracic echocardiography. We found that administration of ivabradine to DMDmdx rats significantly improved cardiac function. Moreover, the amplitude of electrically induced intracellular Ca transients in ventricular cardiomyocytes isolated from DMDmdx rats was increased by the drug. We conclude that ivabradine enhances Ca release from the sarcoplasmic reticulum in dystrophic cardiomyocytes and thereby improves contractile performance in the dystrophic heart.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Ratones , Ratas , Animales , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/tratamiento farmacológico , Ivabradina/farmacología , Ivabradina/uso terapéutico , Ratones Endogámicos mdx , Miocitos Cardíacos , Modelos Animales de Enfermedad
4.
Eur J Pharmacol ; 941: 175495, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621601

RESUMEN

Alterations in cardiac impulse conduction may exert both beneficial and detrimental effects. The assessment of ventricular conduction properties is of paramount importance both in clinical and in experimental settings. Currently the duration of the QRS complex is regarded as hallmark of in-vivo assessment of global ventricular conduction time. In addition, the amplitude of the QRS complex has been suggested to reflect ventricular conduction time in man and in rats. Here, for the first time, we systematically investigated the relationship between QRS duration ("QRS") and QRS amplitude ("RS-height"; RSh) in the murine ECG obtained during anesthesia. In mice harbouring a homozygous knockout of the transmembrane protein podoplanin (PDPN-/-; n = 10) we found both a shorter QRS and a greater RSh than in wild-type animals (n = 13). In both genotypes cumulative i.p. administration of 5 mg/kg and 10 mg/kg of the Na channel blocker flecainide resulted in dose-dependent QRS increase and RSh decrease, whereby the drug-induced changes in RSh were greater than in QRS. In both genotypes the flecainide-induced changes in QRS and in RSh were significantly correlated with each other (R = -0.56, P = 0.004). Whereas dispersion of QRS and RSh was similar between genotypes, dispersion of the ratio QRS/RSh was significantly smaller in PDPN-/- than in wild-types. We conclude that in the murine ECG QRS is inversely related to RSh. We suggest that both parameters should be considered in the analysis of ventricular conduction time in the murine ECG.


Asunto(s)
Flecainida , Sistema de Conducción Cardíaco , Ratas , Animales , Ratones , Flecainida/farmacología , Electrocardiografía , Ventrículos Cardíacos , Frecuencia Cardíaca
6.
Membranes (Basel) ; 12(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35736273

RESUMEN

T-type Ca channels are strongly expressed and important in the developing heart. In the adult heart, these channels play a significant role in pacemaker tissues, but there is uncertainty about their presence and physiological relevance in the working myocardium. Here, we show that the T-type Ca channel isoforms Cav3.1 and Cav3.2 are expressed at a protein level in ventricular cardiomyocytes from healthy adult C57/BL6 mice. Myocytes isolated from adult wild-type and Cav3.2 KO mice showed considerable whole cell T-type Ca currents under beta-adrenergic stimulation with isoprenaline. We further show that the detectability of basal T-type Ca currents in murine wild-type cardiomyocytes depends on the applied experimental conditions. Together, these findings reveal the presence of functional T-type Ca channels in the membrane of ventricular myocytes. In addition, electrically evoked Ca release from the sarcoplasmic reticulum was significantly impaired in Cav3.2 KO compared to wild-type cardiomyocytes. Our work implies a physiological role of T-type Ca channels in the healthy adult murine ventricular working myocardium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...