Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 326(2): E134-E147, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117265

RESUMEN

Vertical sleeve gastrectomy (VSG) restores glucose homeostasis in obese mice and humans. In addition, the increased fibroblast growth factor (FGF)15/19 circulating level postsurgery has been implicated in this effect. However, the impact of FGF15/19 on pancreatic islets remains unclear. Using a diet-induced obese mice model, we demonstrate that VSG attenuates insulin hypersecretion in isolated pancreatic islets, likely due to morphological alterations in the endocrine pancreas such as reduction in islet, ß-cell, and α-cell mass. In addition, VSG relieves gene expression of endoplasmic reticulum (ER) stress and inflammation markers in islets from obese mice. Incubation of INS-1E ß-cells with serum from obese mice induced dysfunction and cell death, whereas these conditions were not induced with serum from obese mice submitted to VSG, implicating the involvement of a humoral factor. Indeed, VSG increased FGF15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor ß-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E cells treated with the serum from these mice. Moreover, exposing INS-1E cells to an FGFR inhibitor abolished the effects of VSG serum on insulin secretion and cell death. Also, recombinant FGF19 prevents INS-1E cells from dysfunction and death induced by serum from obese mice. These findings indicate that the amelioration of glucose-insulin homeostasis promoted by VSG is mediated, at least in part, by FGF15/19. Therefore, approaches promoting FGF15/19 release or action may restore pancreatic islet function in obesity.NEW & NOTEWORTHY Vertical sleeve gastrectomy (VSG) decreases insulin secretion, endoplasmic reticulum (ER) stress, and inflammation in pancreatic islets from obese mice. In addition, VSG increased fibroblast growth factor (FGF)15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor ß-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E ß-cells treated with the serum from these mice. Serum from operated mice protects INS-1E cells from dysfunction and apoptosis, which was mediated by FGF15/19.


Asunto(s)
Células Secretoras de Insulina , Insulina , Ratones , Humanos , Animales , Insulina/metabolismo , Ratones Obesos , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Gastrectomía , Inflamación/metabolismo , Homeostasis
2.
Pharmacol Rep ; 75(6): 1571-1587, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804392

RESUMEN

BACKGROUND: Insulin (INS) resistance and hypoinsulinemia commonly observed in cancer-carrying, can contribute to cachexia. However, the effects of INS and INS sensitizers, such as pioglitazone (PIO), particularly when used in combination therapy, on cancer cachexia have not been evaluated sufficiently. We investigated the effects of INS and PIO, at various doses, either isolated or combined, on cachexia in Walker-256 tumor-bearing rats (TB rats). METHODS: INS or INS + PIO were administered in TB rats, for 6 or 12 days, starting from the day of tumor cells inoculation. RESULTS: INS at 18 or 27 U/kg (12-days treatment), but not 9 U/kg, reduced fat loss and slightly prevented weight loss. However, INS 18 U/kg + PIO 5, 10, 20, or 40 mg/kg (6 or 12-day treatment) reduced fat loss and markedly prevented weight loss but did not affect muscle wasting. While TB rats lost weight (37.9% in 12 days), TB rats treated with INS 18 U/kg + PIO 5 mg/kg showed pronounced weight gain (73.7%), which was greater than the sum (synergism) of the weight gains promoted by isolated treatments with INS 18 U/kg (14.7%) or PIO 5 mg/kg (13.1%). The beneficial effect of the INS 18 U/kg + PIO 5 mg/kg on weight loss was associated with improved INS sensitivity, as indicated by the higher blood glucose clearance constant (kITT), decreased levels of free fatty acids and triacylglycerols (INS resistance-inducing factors) in the blood, and increased expression of p-Akt (INS signaling pathway protein) in adipose tissue. CONCLUSIONS: The combined treatment with INS 18 U/kg + PIO 5 mg/kg was more effective in preventing advanced cachexia in TB rats than each treatment alone, emerging as the best approach, considering the lower dosage and higher efficacy. This combination completely preserved adipose mass and markedly reduced weight loss through a synergistic mechanism linked to improved insulin sensitivity. These findings provide new insights into the importance of drug combinations in effectively combating fat loss in advanced cachexia.


Asunto(s)
Resistencia a la Insulina , Neoplasias , Tiazolidinedionas , Ratas , Animales , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Insulina , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/prevención & control , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Pérdida de Peso , Aumento de Peso , Neoplasias/tratamiento farmacológico , Hipoglucemiantes/farmacología
3.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675244

RESUMEN

Sleeve gastrectomy (SG) successfully recovers metabolic homeostasis in obese humans and rodents while also resulting in the normalization of insulin sensitivity and insulinemia. Reduced insulin levels have been attributed to lower insulin secretion and increased insulin clearance in individuals submitted to SG. Insulin degradation mainly occurs in the liver in a process controlled, at least in part, by the insulin-degrading enzyme (IDE). However, research has yet to explore whether liver IDE expression or activity is altered after SG surgery. In this study, C57BL/6 mice were fed a chow (CTL) or high-fat diet (HFD) for 10 weeks. Afterward, the HFD mice were randomly assigned to two groups: sham-surgical (HFD-SHAM) and SG-surgical (HFD-SG). Here, we confirmed that SG improves glucose-insulin homeostasis in obese mice. Additionally, SG reduced insulinemia by reducing insulin secretion, assessed by the analysis of plasmatic C-peptide content, and increasing insulin clearance, which was evaluated through the calculation of the plasmatic C-peptide:insulin ratio. Although no changes in hepatic IDE activity were observed, IDE expression was higher in the liver of HFD-SG compared with HFD-SHAM mice. These results indicate that SG may be helpful to counteract obesity-induced hyperinsulinemia by increasing insulin clearance, likely through enhanced liver IDE expression.


Asunto(s)
Hiperinsulinismo , Resistencia a la Insulina , Humanos , Ratones , Animales , Insulina/metabolismo , Ratones Obesos , Péptido C , Ratones Endogámicos C57BL , Pérdida de Peso , Obesidad/etiología , Obesidad/cirugía , Insulina Regular Humana , Hiperinsulinismo/etiología , Gastrectomía/métodos , Dieta Alta en Grasa/efectos adversos
4.
Sci Rep ; 12(1): 22273, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564463

RESUMEN

Aging is associated with glucose metabolism disturbances, such as insulin resistance and hyperinsulinemia, which contribute to the increased prevalence of type 2 diabetes (T2D) and its complications in the elderly population. In this sense, some bile acids have emerged as new therapeutic targets to treat TD2, as well as associated metabolic disorders. The taurine conjugated bile acid, tauroursodeoxycholic acid (TUDCA) improves glucose homeostasis in T2D, obesity, and Alzheimer's disease mice model. However, its effects in aged mice have not been explored yet. Here, we evaluated the actions of TUDCA upon glucose-insulin homeostasis in aged C57BL/6 male mice (18-month-old) treated with 300 mg/kg of TUDCA or its vehicle. TUDCA attenuated hyperinsulinemia and improved glucose homeostasis in aged mice, by enhancing liver insulin-degrading enzyme (IDE) expression and insulin clearance. Furthermore, the improvement in glucose-insulin homeostasis in these mice was accompanied by a reduction in adiposity, associated with adipocyte hypertrophy, and lipids accumulation in the liver. TUDCA-treated aged mice also displayed increased energy expenditure and metabolic flexibility, as well as a better cognitive ability. Taken together, our data highlight TUDCA as an interesting target for the attenuation of age-related hyperinsulinemia and its deleterious effects on metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Anciano , Ratones , Masculino , Humanos , Animales , Ácidos y Sales Biliares , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones Endogámicos C57BL , Hiperinsulinismo/tratamiento farmacológico , Ácido Tauroquenodesoxicólico/farmacología , Ácido Tauroquenodesoxicólico/uso terapéutico , Insulina/metabolismo , Obesidad/tratamiento farmacológico , Glucosa/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012692

RESUMEN

Resistance training increases insulin secretion and beta cell function in healthy mice. Here, we explored the effects of resistance training on beta cell glucose sensing and survival by using in vitro and in vivo diabetic models. A pancreatic beta cell line (INS-1E), incubated with serum from trained mice, displayed increased insulin secretion, which could be linked with increased expression of glucose transporter 2 (GLUT2) and glucokinase (GCK). When cells were exposed to pro-inflammatory cytokines (in vitro type 1 diabetes), trained serum preserved both insulin secretion and GCK expression, reduced expression of proteins related to apoptotic pathways, and also protected cells from cytokine-induced apoptosis. Using 8-week-old C57BL/6 mice, turned diabetic by multiple low doses of streptozotocin, we observed that resistance training increased muscle mass and fat deposition, reduced fasting and fed glycemia, and improved glucose tolerance. These findings may be explained by the increased fasting and fed insulinemia, along with increased beta cell mass and beta cell number per islet, observed in diabetic-trained mice compared to diabetic sedentary mice. In conclusion, we believe that resistance training stimulates the release of humoral factors which can turn beta cells more resistant to harmful conditions and improve their response to a glucose stimulus.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Condicionamiento Físico Animal , Entrenamiento de Fuerza , Animales , Glucemia/metabolismo , Diabetes Mellitus/metabolismo , Glucoquinasa/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Eur J Pharmacol ; 928: 175122, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35764131

RESUMEN

Human islet amyloid polypeptide (hIAPP or amylin) is a hormone co-secreted with insulin by pancreatic ß-cells, and is the main component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes and may be involved in ß-cell dysfunction and death, observed in this disease. Thus, counteracting islet amyloid toxicity represents a therapeutic approach to preserve ß-cell mass and function. In this sense, thiazolidinediones (TZDs), as rosiglitazone, have shown protective effects against other harmful insults to ß-cells. For this reason, we investigated whether rosiglitazone could protect ß-cells from hIAPP-induced cell death and the underlying mechanisms mediating such effect. Here, we show that rosiglitazone improved the viability of hIAPP-exposed INS-1E cells. This benefit is not dependent on the insulin-degrading enzyme (IDE) since rosiglitazone did not modulate IDE protein content and activity. However, rosiglitazone inhibited hIAPP fibrillation and decreased hIAPP-induced expression of C/EBP homologous protein (CHOP) (CTL 100.0 ± 8.4; hIAPP 182.7 ± 19.1; hIAPP + RGZ 102.8 ± 9.5), activating transcription factor-4 (ATF4) (CTL 100.0 ± 3.1; hIAPP 234.9 ± 19.3; hIAPP + RGZ 129.6 ± 3.0) and phospho-eukaryotic initiation factor 2-alpha (p-eIF2α) (CTL 100.0 ± 31.1; hIAPP 234.1 ± 36.2; hIAPP + RGZ 150.4 ± 18.0). These findings suggest that TZDs treatment may be a promising approach to preserve ß-cell mass and function by inhibiting islet amyloid formation and decreasing endoplasmic reticulum stress hIAPP-induced.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Rosiglitazona , Amiloide/metabolismo , Animales , Apoptosis , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química , Ratas , Rosiglitazona/farmacología
7.
J Cell Physiol ; 237(2): 1119-1142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34636428

RESUMEN

Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic ß-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in ß-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards ß-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in ß-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved ß-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Amiloide/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo
8.
Front Endocrinol (Lausanne) ; 12: 679492, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054736

RESUMEN

Hyperinsulinemia is frequently associated with aging and may cause insulin resistance in elderly. Since insulin secretion and clearance decline with age, hyperinsulinemia seems to be maintained, primarily, due to a decrease in the insulin clearance. To investigate these aging effects, 3- and 18-month-old male C57BL/6 mice were subjected to intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT) and, during the ipGTT, plasma c-peptide and insulin were measure to evaluate in vivo insulin clearance. Glucose-stimulated insulin secretion in isolated pancreatic islets was also assessed, and liver samples were collected for molecular analyses (western blot). Although insulin sensitivity was not altered in the old mice, glucose tolerance, paradoxically, seems to be increased, accompanied by higher plasma insulin, during ipGTT. While insulin secretion did not increase, insulin clearance was reduced in the old mice, as suggested by the lower c-peptide:insulin ratio, observed during ipGTT. Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) and insulin-degrading enzyme (IDE), as well as the activity of this enzyme, were reduced in the liver of old mice, justifying the decreased insulin clearance observed in these mice. Therefore, loss of hepatic CEACAM1 and IDE function may be directly related to the decline in insulin clearance during aging.


Asunto(s)
Envejecimiento/metabolismo , Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Animales , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Resistencia a la Insulina/fisiología , Secreción de Insulina/fisiología , Insulisina/metabolismo , Islotes Pancreáticos/metabolismo , Hígado/metabolismo , Masculino , Ratones
9.
Sci Rep ; 11(1): 8574, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883630

RESUMEN

Resistance exercise exerts beneficial effects on glycemic control, which could be mediated by exercise-induced humoral factors released in the bloodstream. Here, we used C57Bl/6 healthy mice, submitted to resistance exercise training for 10 weeks. Trained mice presented higher muscle weight and maximum voluntary carrying capacity, combined with reduced body weight gain and fat deposition. Resistance training improved glucose tolerance and reduced glycemia, with no alterations in insulin sensitivity. In addition, trained mice displayed higher insulinemia in fed state, associated with increased glucose-stimulated insulin secretion. Islets from trained mice showed reduced expression of genes related to endoplasmic reticulum (ER) stress, associated with increased expression of Ins2. INS-1E beta-cells incubated with serum from trained mice displayed similar pattern of insulin secretion and gene expression than isolated islets from trained mice. When exposed to CPA (an ER stress inducer), the serum from trained mice partially preserved the secretory function of INS-1E cells, and prevented CPA-induced apoptosis. These data suggest that resistance training, in healthy mice, improves glucose homeostasis by enhancing insulin secretion, which could be driven, at least in part, by humoral factors.


Asunto(s)
Glucosa/metabolismo , Secreción de Insulina , Entrenamiento de Fuerza , Animales , Apoptosis , Estrés del Retículo Endoplásmico , Prueba de Tolerancia a la Glucosa , Homeostasis , Insulina/metabolismo , Secreción de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Condicionamiento Físico Animal
10.
Vitam Horm ; 115: 185-219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33706949

RESUMEN

Aging is characterized by a progressive loss of physiological function leading to increase in the vulnerability to death. This deterioration process occurs in all living organisms and is the primary risk factor for pathological conditions including obesity, type 2 diabetes mellitus, Alzheimer's disease and cardiovascular diseases. Most of the age-related diseases have been associated with impairment of action of an important hormone, namely insulin. It is well-known that this hormone is a critical mediator of metabolism, growth, proliferation and differentiation. Insulin action depends on two processes that determine its circulating levels, insulin secretion and clearance, and insulin sensitivity in its target tissues. Aging has deleterious effects on these three mechanisms, impairing insulin action, thereby increasing the risk for diseases and death. Thus, improving insulin action may be an important strategy to have a healthier and longer life.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Envejecimiento/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Obesidad
11.
J Dev Orig Health Dis ; 11(2): 146-153, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31309914

RESUMEN

One of the most consumed pesticides in the world is glyphosate, the active ingredient in the herbicide ROUNDUP®. Studies demonstrate that glyphosate can act as an endocrine disruptor and that exposure to this substance at critical periods in the developmental period may program the fetus to induce reproductive damage in adulthood. Our hypothesis is that maternal exposure to glyphosate during pregnancy and lactation in mice will affect the development of male reproductive organs, impairing male fertility during adult life. Female mice consumed 0.5% glyphosate-ROUNDUP® in their drinking water [glyphosate-based herbicide (GBH) group] or filtered water [control (CTRL) group] from the fourth day of pregnancy until the end of the lactation period. Male F1 offspring were designated, according to their mother's treatment, as CTRL-F1 and GBH-F1. Female mice that drank glyphosate displayed reduced body weight (BW) gain during gestation, but no alterations in litter size. Although GBH male F1 offspring did not exhibit modifications in BW, they demonstrated delayed testicular descent. Furthermore, at PND150, GBH-F1 mice presented a lower number of spermatozoa in the cauda epididymis and reduced epithelial height of the seminiferous epithelium. Notably, intratesticular testosterone concentrations were enhanced in GBH-F1 mice; we show that it is an effect associated with increased plasma and pituitary concentrations of luteinizing hormone. Therefore, data indicate that maternal exposure to glyphosate-ROUNDUP® during pregnancy and lactation may lead to decreased spermatogenesis and disruptions in hypothalamus-pituitary-testicular axis regulation in F1 offspring.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/toxicidad , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Espermatogénesis/efectos de los fármacos , Animales , Animales Lactantes , Modelos Animales de Enfermedad , Femenino , Ganancia de Peso Gestacional/efectos de los fármacos , Glicina/toxicidad , Humanos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Lactancia , Hormona Luteinizante/sangre , Hormona Luteinizante/metabolismo , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/patología , Epitelio Seminífero/efectos de los fármacos , Epitelio Seminífero/patología , Recuento de Espermatozoides , Espermatozoides/efectos de los fármacos , Espermatozoides/crecimiento & desarrollo , Testosterona/análisis , Testosterona/metabolismo , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...