Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Gen Physiol ; 153(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33822868

RESUMEN

Inwardly rectifying potassium (Kir) channels are broadly expressed in both excitable and nonexcitable tissues, where they contribute to a wide variety of cellular functions. Numerous studies have established that rectification of Kir channels is not an inherent property of the channel protein itself, but rather reflects strong voltage dependence of channel block by intracellular cations, such as polyamines and Mg2+. Here, we identify a previously unknown mechanism of inward rectification in Kir4.1/Kir5.1 channels in the absence of these endogenous blockers. This novel intrinsic rectification originates from the voltage-dependent behavior of Kir4.1/Kir5.1, which is generated by the flux of potassium ions through the channel pore; the inward K+-flux induces the opening of the gate, whereas the outward flux is unable to maintain the gate open. This gating mechanism powered by the K+-flux is convergent with the gating of PIP2 because, at a saturating concentration, PIP2 greatly reduces the inward rectification. Our findings provide evidence of the coexistence of two rectification mechanisms in Kir4.1/Kir5.1 channels: the classical inward rectification induced by blocking cations and an intrinsic voltage-dependent mechanism generated by the K+-flux gating.


Asunto(s)
Canales de Potasio de Rectificación Interna , Iones , Potasio , Bloqueadores de los Canales de Potasio
2.
Eur J Pharmacol ; 815: 56-63, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28993158

RESUMEN

Inward rectifier potassium (Kir) channels are expressed in almost all mammalian tissues and contribute to a wide range of physiological processes. Kir4.1 channel expression is found in the brain, inner ear, eye, and kidney. Loss-of-function mutations in the pore-forming Kir4.1 subunit cause an autosomal recessive disorder characterized by epilepsy, ataxia, sensorineural deafness and tubulopathy (SeSAME/EST syndrome). Despite its importance in physiological and pathological conditions, pharmacological research of Kir4.1 is limited. Here, we characterized the effect of pentamidine on Kir4.1 channels using electrophysiology, mutagenesis and computational methods. Pentamidine potently inhibited Kir4.1 channels when applied to the cytoplasmic side under inside-out patch clamp configuration (IC50 = 97nM). The block was voltage dependent. Molecular modeling predicted the binding of pentamidine to the transmembrane pore region of Kir4.1 at aminoacids T127, T128 and E158. Mutation of each of these residues reduced the potency of pentamidine to block Kir4.1 channels. A pentamidine analog (PA-6) inhibited Kir4.1 with similar potency (IC50 = 132nM). Overall, this study shows that pentamidine blocks Kir4.1 channels interacting with threonine and glutamate residues in the transmembrane pore region. These results can be useful to design novel compounds with major potency and specificity over Kir4.1 channels.


Asunto(s)
Pentamidina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Sitios de Unión , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Pentamidina/metabolismo , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Conformación Proteica
3.
Brain Res ; 1663: 87-94, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28288868

RESUMEN

Inwardly rectifying potassium (Kir) channels are expressed in many cell types and contribute to a wide range of physiological processes. Particularly, Kir4.1 channels are involved in the astroglial spatial potassium buffering. In this work, we examined the effects of the cationic amphiphilic drug quinacrine on Kir4.1 channels heterologously expressed in HEK293 cells, employing the patch clamp technique. Quinacrine inhibited the currents of Kir4.1 channels in a concentration and voltage dependent manner. In inside-out patches, quinacrine inhibited Kir4.1 channels with an IC50 value of 1.8±0.3µM and with extremely slow blocking and unblocking kinetics. Molecular modeling combined with mutagenesis studies suggested that quinacrine blocks Kir4.1 by plugging the central cavity of the channels, stabilized by the residues E158 and T128. Overall, this study shows that quinacrine blocks Kir4.1 channels, which would be expected to impact the potassium transport in several tissues.


Asunto(s)
Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Quinacrina/farmacología , Animales , Astrocitos/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Técnicas de Placa-Clamp/métodos , Potasio/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Quinacrina/metabolismo , Ratas
4.
Eur J Pharmacol ; 800: 40-47, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28216048

RESUMEN

Kir4.1 channels have been implicated in various physiological processes, mainly in the K+ homeostasis of the central nervous system and in the control of glial function and neuronal excitability. Even though, pharmacological research of these channels is very limited. Chloroquine (CQ) is an amino quinolone derivative known to inhibit Kir2.1 and Kir6.2 channels with different action mechanism and binding site. Here, we employed patch-clamp methods, mutagenesis analysis, and molecular modeling to characterize the molecular pharmacology of Kir4.1 inhibition by CQ. We found that this drug inhibits Kir4.1 channels heterologously expressed in HEK-293 cells. CQ produced a fast-onset voltage-dependent pore-blocking effect on these channels. In inside-out patches, CQ showed notable higher potency (IC50 ≈0.5µM at +50mV) and faster onset of block when compared to whole-cell configuration (IC50 ≈7µM at +60mV). Also, CQ showed a voltage-dependent unblock with repolarization. These results suggest that the drug directly blocks Kir4.1 channels by a pore-plugging mechanism. Moreover, we found that two residues (Thr128 and Glu158), facing the central cavity and located within the transmembrane pore, are particularly important structural determinants of CQ block. This evidence was similar to what was previously reported with Kir6.2, but distinct from the interaction site (cytoplasmic pore) CQ-Kir2.1. Thus, our findings highlight the diversity of interaction sites and mechanisms that underlie amino quinolone inhibition of Kir channels.


Asunto(s)
Cloroquina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/química , Sitios de Unión , Cloroquina/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Cinética , Simulación del Acoplamiento Molecular , Porosidad , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...