Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chempluschem ; : e202300728, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529705

RESUMEN

The transition metal-catalyzed C-H activation of arenes directed by sulfoxides represents a compelling strategy in organic synthesis, owing to its exceptional regioselectivity and high efficiency. This innovative approach stands out for its traceless character, enabling the direct functionalization of arenes, before the easy removal or conversion of the key sulfinyl moiety. Beyond their utility as a directing group, sulfoxides have proved particularly valuable to mediate as chiral auxiliaries, presenting exciting prospects for the synthesis of stereo-enriched compounds upon C-H functionalization. The versatility demonstrated by the method paves the way to different structures with potential applications ranging from medicinal chemistry to organic electronics.

2.
Chemistry ; 29(40): e202300645, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37134303

RESUMEN

Carbazole- and fluorene-substituted benzidine blocks have been functionalized with two different solubilizing pendant groups, in order to enhance the material's solubility in greener solvents. Preserving the optical and electrochemical properties, the aromatic function and substitution showed an important influence on the solvent affinity, achieving concentrations up to 150 mg/mL in o-xylenes for the glycol-containing materials and decent solubility in alcohols for the compounds functionalized with ionic chains. The latter solution proved to be ideal for the preparation of luminescence slot-die coating film on top of flexible-substrates up to 33 cm×2 cm. As a proof of concept, the materials have been implemented in different organic electronic devices, highlighting the low turn-on voltage (4 V) presented by organic light-emitting diodes (OLEDs), which is comparable with vacuum-processed devices. A structure-solubility relationship and a synthetic strategy are disentangled in this manuscript to tailor organic semiconductors and adapt their solubility towards the desired solvent and application.

3.
Chemistry ; 29(18): e202203790, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36661211

RESUMEN

We report a novel stimuli-responsive fluorescent material platform that relies on an evocation of aggregation-induced emission (AIE) from tetraphenylethylene (TPE)-based surfactants localized at one hemisphere of biphasic micro-scale Janus emulsion droplets. Dynamic alterations in the available interfacial area were evoked through surfactant-induced dynamic changes of the internal droplet morphology that can be modulated as a function of the balance of interfacial tensions of the droplet constituent phases. Thus, by analogy with a Langmuir-Blodgett trough that enables selective concentration of surfactants at a liquid-gas interface, we demonstrate here a method for controllable modulation of the available interfacial area of surfactant-functionalized liquid-liquid interfaces. We show that a morphology-dependent alteration of the interfacial area can be used to evoke an optical signal, by selectively assembling synthesized TPE-based surfactants on the respective droplet interfaces. A trigger-induced increase in the concentration of TPE-based surfactants at the liquid-liquid interfaces results in an evocation of aggregation-induced emission (AIE), inducing an up to 3.9-fold increase in the measured emission intensity of the droplets.

4.
Commun Chem ; 5(1): 142, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36697939

RESUMEN

Photodynamic therapy is a clinically approved anticancer modality that employs a light-activated agent (photosensitizer) to generate cytotoxic reactive oxygen species (ROS). There is therefore a growing interest for developing innovative photosensitizing agents with enhanced phototherapeutic performances. Herein, we report on a rational design synthetic procedure that converts the ultrabright benzothioxanthene imide (BTI) dye into three heavy-atom-free thionated compounds featuring close-to-unit singlet oxygen quantum yields. In contrast to the BTI, these thionated analogs display an almost fully quenched fluorescence emission, in agreement with the formation of highly populated triplet states. Indeed, the sequential thionation on the BTI scaffold induces torsion of its skeleton reducing the singlet-triplet energy gaps and enhancing the spin-orbit coupling. These potential PSs show potent cancer-cell ablation under light irradiation while remaining non-toxic under dark condition owing to a photo-cytotoxic mechanism that we believe simultaneously involves singlet oxygen and superoxide species, which could be both characterized in vitro. Our study demonstrates that this simple site-selected thionated platform is an effective strategy to convert conventional carbonyl-containing fluorophores into phototherapeutic agents for anticancer PDT.

5.
J Phys Chem B ; 125(30): 8572-8580, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34291941

RESUMEN

Singlet-triplet interconversions (intersystem crossing, ISC) in organic molecules are at the basis of many important processes in cutting-edge photonic applications (organic light-emitting devices, photodynamic therapy, etc.). Selection rules for these transitions are mainly governed by the spin-orbit coupling (SOC) phenomenon. Although the SOC relies on complex relativistic phenomena, theoreticians have, with time, developed increasingly sophisticated and efficient approaches to gain access to a satisfactory evaluation of its magnitude. However, recent works have highlighted the remarkable and somehow unexpected efficiency of dimers of small conjugated molecules in terms of ISC quantum yields, whose origin has not been completely investigated. In this work, we bring a coupled experimental and theoretical analysis of the origin of the unusually large ISC efficiency on a series of such dimers that differ by their nature (covalent or supramolecular). We show that considering the dynamical nature of the SOC, and especially its dependence on angular orientations between the dimer subunits sometimes overlooked in the literature, it is necessary to rationalize some counterintuitive experimental observations. This combined experimental and theoretical work paves the way for new molecular engineering rules for SOC control.


Asunto(s)
Fotoquimioterapia , Dimerización
6.
Chem Sci ; 12(20): 7012-7022, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-34123329

RESUMEN

We report on computational studies of the potential of three borane Lewis acids (LAs) (B(C6F5)3 (BCF), BF3, and BBr3) to form stable adducts and/or to generate positive polarons with three different semiconducting π-conjugated polymers (PFPT, PCPDTPT and PCPDTBT). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations based on range-separated hybrid (RSH) functionals provide insight into changes in the electronic structure and optical properties upon adduct formation between LAs and the two polymers containing pyridine moieties, PFPT and PCPDTPT, unravelling the complex interplay between partial hybridization, charge transfer and changes in the polymer backbone conformation. We then assess the potential of BCF to induce p-doping in PCPDTBT, which does not contain pyridine groups, by computing the energetics of various reaction mechanisms proposed in the literature. We find that reaction of BCF(OH2) to form protonated PCPDTBT and [BCF(OH)]-, followed by electron transfer from a pristine to a protonated PCPDTBT chain is highly endergonic, and thus unlikely at low doping concentration. The theoretical and experimental data can, however, be reconciled if one considers the formation of [BCF(OH)BCF]- or [BCF(OH)(OH2)BCF]- counterions rather than [BCF(OH)]- and invokes subsequent reactions resulting in the elimination of H2.

7.
Phys Chem Chem Phys ; 22(22): 12373-12381, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32309827

RESUMEN

In spite of their remarkable luminescence properties, benzothioxanthene imide (BTXI, an imide containing rylene chromophores) derivatives have been largely overlooked compared to their perylene bisimide and naphthalene bisimide counterparts. Thus, their detailed photophysics are much less understood. In this paper, we show how relatively simple structural modifications of the backbone of BTXIs can lead to impressive variations in their inter-system crossing kinetics. Thus, through rational engineering of their structure, it is possible to obtain a triplet formation quantum yield that reaches unity, making BTXI a promising class of compounds for triplet-based applications (photodynamic therapy, electroluminescence, etc.).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...