Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
People Nat (Hoboken) ; 2(2): 305-316, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32626843

RESUMEN

Making agriculture sustainable is a global challenge. In the European Union (EU), the Common Agricultural Policy (CAP) is failing with respect to biodiversity, climate, soil, land degradation as well as socio-economic challenges.The European Commission's proposal for a CAP post-2020 provides a scope for enhanced sustainability. However, it also allows Member States to choose low-ambition implementation pathways. It therefore remains essential to address citizens' demands for sustainable agriculture and rectify systemic weaknesses in the CAP, using the full breadth of available scientific evidence and knowledge.Concerned about current attempts to dilute the environmental ambition of the future CAP, and the lack of concrete proposals for improving the CAP in the draft of the European Green Deal, we call on the European Parliament, Council and Commission to adopt 10 urgent action points for delivering sustainable food production, biodiversity conservation and climate mitigation.Knowledge is available to help moving towards evidence-based, sustainable European agriculture that can benefit people, nature and their joint futures.The statements made in this article have the broad support of the scientific community, as expressed by above 3,600 signatories to the preprint version of this manuscript. The list can be found here (https://doi.org/10.5281/zenodo.3685632).

2.
Bioscience ; 69(11): 888-899, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31719711

RESUMEN

Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.

3.
PLoS One ; 8(9): e75599, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098704

RESUMEN

Numerous studies have reported positive effects of species richness on plant community productivity. Such biodiversity effects are usually quantified by comparing the performance of plant mixtures with reference monocultures. However, several mechanisms, such as the lack of resource complementarity and facilitation or the accumulation of detrimental agents, suggest that monocultures are more likely than mixtures to deteriorate over time. Increasing biodiversity effects over time could therefore result from declining monocultures instead of reflecting increases in the functioning of mixtures. Commonly, the latter is assumed when positive trends in biodiversity effects occur. Here, we analysed the performance of 60 grassland species growing in monocultures and mixtures over 9 years in a biodiversity experiment to clarify whether their temporal biomass dynamics differed and whether a potential decline of monocultures contributed significantly to the positive net biodiversity effect observed. Surprisingly, individual species' populations produced, on average, significantly more biomass per unit area when growing in monoculture than when growing in mixture. Over time, productivity of species decreased at a rate that was, on average, slightly more negative in monocultures than in mixtures. The mean net biodiversity effect across all mixtures was continuously positive and ranged between 64-217 g per m(2). Short-term increases in the mean net biodiversity effect were only partly due to deteriorating monocultures and were strongly affected by particular species gaining dominance in mixtures in the respective years. We conclude that our species performed, on average, comparably in monocultures and mixtures; monoculture populations being slightly more productive than mixture populations but this trend decreased over time. This suggested that negative feedbacks had not yet affected monocultures strongly but could potentially become more evident in the future. Positive biodiversity effects on aboveground productivity were heavily driven by a small, but changing, set of species that behaved differently from the average species.


Asunto(s)
Biodiversidad , Ecosistema , Poaceae/crecimiento & desarrollo , Biomasa , Alemania , Dinámica Poblacional , Especificidad de la Especie
4.
Ecology ; 90(12): 3290-302, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20120799

RESUMEN

Plant diversity has been shown to increase community biomass in experimental communities, but the mechanisms resulting in such positive biodiversity effects have remained largely unknown. We used a large-scale six-year biodiversity experiment near Jena, Germany, to examine how aboveground community biomass in grasslands is affected by different components of plant diversity and thereby infer the mechanisms that may underlie positive biodiversity effects. As components of diversity we defined the number of species (1-16), number of functional groups (1-4), presence of functional groups (legumes, tall herbs, small herbs, and grasses) and proportional abundance of functional groups. Using linear models, replacement series on the level of functional groups, and additive partitioning on the level of species, we explored whether the observed biodiversity effects originated from disproportionate effects of single functional groups or species or from positive interactions between them. Aboveground community biomass was positively related to the number of species measured across functional groups as well as to the number of functional groups measured across different levels of species richness. Furthermore, increasing the number of species within functional groups increased aboveground community biomass, indicating that species within functional groups were not redundant with respect to biomass production. A positive relationship between the number of functional groups and aboveground community biomass within a particular level of species richness suggested that complementarity was larger between species belonging to different rather than to the same functional groups. The presence of legumes or tall herbs had a strong positive impact on aboveground community biomass whereas the presence of small herbs or grasses had on average no significant effect. Two- and three-way interactions between functional group presences were weak, suggesting that their main effects were largely additive. Replacement series analyses on the level of functional groups revealed strong transgressive overyielding and relative yields >1, indicating facilitation. On the species level, we found strong complementarity effects that increased over time while selection effects due to disproportionate contributions of particular species decreased over time. We conclude that transgressive overyielding between functional groups and species richness effects within functional groups caused the positive biodiversity effects on aboveground community biomass in our experiment.


Asunto(s)
Biodiversidad , Ecosistema , Poaceae/crecimiento & desarrollo , Biomasa , Modelos Lineales , Poaceae/fisiología , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie
5.
Syst Biol ; 54(5): 719-30, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16243759

RESUMEN

Madagascar harbors four large adaptive radiations of endemic terrestrial mammals: lemurs, tenrecs, carnivorans, and rodents. These rank among the most spectacular examples of evolutionary diversification, but their monophyly and origins are debated. The lack of Tertiary fossils from Madagascar leaves molecular studies as most promising to solve these controversies. We provide a simultaneous reconstruction of phylogeny and age of the four radiations based on a 3.5-kb data set from three nuclear genes (ADRA2B, vWF, and AR). The analysis supports each as a monophyletic clade, sister to African taxa, and thereby identifies four events of colonization out of Africa. To infer the time windows for colonization, we take into account both the divergence from the closest non-insular sister group and the initial intra-insular radiation, which is a novel but conservative approach in studies of the colonization history of Madagascar. We estimate that lemurs colonized Madagascar between 60 million years ago (Mya) (split from lorises) and 50 Mya (lemur radiation) (70-41 Mya taking 95% credibility intervals into account), tenrecs between 42 and 25 Mya (50-20 Mya), carnivorans between 26 and 19 Mya (33-14 Mya), and rodents between 24 and 20 Mya (30-15 Mya). These datings suggest at least two asynchronous colonization events: by lemurs in the Late Cretaceous-Middle Eocene, and by carnivorans and rodents in the Early Oligocene-Early Miocene. The colonization by tenrecs may have taken place simultaneously with either of these two events, or in a third event in the Late Eocene-Oligocene. Colonization by at least lemurs, rodents, and carnivorans appears to have occurred by overseas rafting rather than via a land bridge hypothesized to have existed between 45 and 26 Mya, but the second scenario cannot be ruled out if credibility intervals are taken into account.


Asunto(s)
Demografía , Evolución Molecular , Mamíferos/genética , Mamíferos/fisiología , Filogenia , Animales , Secuencia de Bases , Teorema de Bayes , Funciones de Verosimilitud , Madagascar , Modelos Genéticos , Datos de Secuencia Molecular , Dinámica Poblacional , Receptores Adrenérgicos alfa 2/genética , Receptores Androgénicos/genética , Análisis de Secuencia de ADN , Factor de von Willebrand/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...