Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445738

RESUMEN

The structural stability of the extensively studied organic-inorganic hybrid methylammonium tetrel halide perovskite semiconductors, MATtX3 (MA = CH3NH3+; Tt = Ge, Sn, Pb; X = Cl, Br, I), arises as a result of non-covalent interactions between an organic cation (CH3NH3+) and an inorganic anion (TtX3-). However, the basic understanding of the underlying chemical bonding interactions in these systems that link the ionic moieties together in complex configurations is still limited. In this study, ion pair models constituting the organic and inorganic ions were regarded as the repeating units of periodic crystal systems and density functional theory simulations were performed to elucidate the nature of the non-covalent interactions between them. It is demonstrated that not only the charge-assisted N-H···X and C-H···X hydrogen bonds but also the C-N···X pnictogen bonds interact to stabilize the ion pairs and to define their geometries in the gas phase. Similar interactions are also responsible for the formation of crystalline MATtX3 in the low-temperature phase, some of which have been delineated in previous studies. In contrast, the Tt···X tetrel bonding interactions, which are hidden as coordinate bonds in the crystals, play a vital role in holding the inorganic anionic moieties (TtX3-) together. We have demonstrated that each Tt in each [CH3NH3+•TtX3-] ion pair has the capacity to donate three tetrel (σ-hole) bonds to the halides of three nearest neighbor TtX3- units, thus causing the emergence of an infinite array of 3D TtX64- octahedra in the crystalline phase. The TtX44- octahedra are corner-shared to form cage-like inorganic frameworks that host the organic cation, leading to the formation of functional tetrel halide perovskite materials that have outstanding optoelectronic properties in the solid state. We harnessed the results using the quantum theory of atoms in molecules, natural bond orbital, molecular electrostatic surface potential and independent gradient models to validate these conclusions.


Asunto(s)
Hidrógeno , Óxidos , Modelos Moleculares
2.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047632

RESUMEN

The ion pairs [Cs+•TtX3-] (Tt = Pb, Sn, Ge; X = I, Br, Cl) are the building blocks of all-inorganic cesium tetrel halide perovskites in 3D, CsTtX3, that are widely regarded as blockbuster materials for optoelectronic applications such as in solar cells. The 3D structures consist of an anionic inorganic tetrel halide framework stabilized by the cesium cations (Cs+). We use computational methods to show that the geometrical connectivity between the inorganic monoanions, [TtX3-]∞, that leads to the formation of the TtX64- octahedra and the 3D inorganic perovskite architecture is the result of the joint effect of polarization and coulombic forces driven by alkali and tetrel bonds. Depending on the nature and temperature phase of these perovskite systems, the Tt···X tetrel bonds are either indistinguishable or somehow distinguishable from Tt-X coordinate bonds. The calculation of the potential on the electrostatic surface of the Tt atom in molecular [Cs+•TtX3-] provides physical insight into why the negative anions [TtX3-] attract each other when in close proximity, leading to the formation of the CsTtX3 tetrel halide perovskites in the solid state. The inter-molecular (and inter-ionic) geometries, binding energies, and charge density-based topological properties of sixteen [Cs+•TtX3-] ion pairs, as well as some selected oligomers [Cs+•PbI3-]n (n = 2, 3, 4), are discussed.


Asunto(s)
Compuestos de Calcio , Compuestos Inorgánicos , Cesio , Semiconductores
3.
J Inorg Biochem ; 242: 112154, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871417

RESUMEN

The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.


Asunto(s)
Cobalto , Vitamina B 12 , Cobalto/química , Ligandos , Vitamina B 12/química , Oxidación-Reducción , Química Inorgánica
4.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955945

RESUMEN

The pnictogen bond, a somewhat overlooked supramolecular chemical synthon known since the middle of the last century, is one of the promising types of non-covalent interactions yet to be fully understood by recognizing and exploiting its properties for the rational design of novel functional materials. Its bonding modes, energy profiles, vibrational structures and charge density topologies, among others, have yet to be comprehensively delineated, both theoretically and experimentally. In this overview, attention is largely centered on the nature of nitrogen-centered pnictogen bonds found in organic-inorganic hybrid metal halide perovskites and closely related structures deposited in the Cambridge Structural Database (CSD) and the Inorganic Chemistry Structural Database (ICSD). Focusing on well-characterized structures, it is shown that it is not merely charge-assisted hydrogen bonds that stabilize the inorganic frameworks, as widely assumed and well-documented, but simultaneously nitrogen-centered pnictogen bonding, and, depending on the atomic constituents of the organic cation, other non-covalent interactions such as halogen bonding and/or tetrel bonding, are also contributors to the stabilizing of a variety of materials in the solid state. We have shown that competition between pnictogen bonding and other interactions plays an important role in determining the tilting of the MX6 (X = a halogen) octahedra of metal halide perovskites in one, two and three-dimensions. The pnictogen interactions are identified to be directional even in zero-dimensional crystals, a structural feature in many engineered ordered materials; hence an interplay between them and other non-covalent interactions drives the structure and the functional properties of perovskite materials and enabling their application in, for example, photovoltaics and optoelectronics. We have demonstrated that nitrogen in ammonium and its derivatives in many chemical systems acts as a pnictogen bond donor and contributes to conferring stability, and hence functionality, to crystalline perovskite systems. The significance of these non-covalent interactions should not be overlooked, especially when the focus is centered on the rationale design and discovery of such highly-valued materials.


Asunto(s)
Compuestos de Calcio , Óxidos , Compuestos de Calcio/química , Halógenos/química , Nitrógeno , Óxidos/química , Titanio
5.
Molecules ; 27(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35684359

RESUMEN

In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in another or the same molecular entity. It is the third member of the family of pnictogen bonds formed by the third atom of the pnictogen family, Group 15 of the periodic table, and is an inter- or intramolecular noncovalent interaction. In this overview, we present several illustrative crystal structures deposited into the Cambridge Structure Database (CSD) and the Inorganic Chemistry Structural Database (ICSD) during the last and current centuries to demonstrate that the arsenic atom in molecular entities has a significant ability to act as an electrophilic agent to make an attractive engagement with nucleophiles when in close vicinity, thereby forming σ-hole or π-hole interactions, and hence driving (in part, at least) the overall stability of the system's crystalline phase. This overview does not include results from theoretical simulations reported by others as none of them address the signatory details of As-centered pnictogen bonds. Rather, we aimed at highlighting the interaction modes of arsenic-centered σ- and π-holes in the rationale design of crystal lattices to demonstrate that such interactions are abundant in crystalline materials, but care has to be taken to identify them as is usually done with the much more widely known noncovalent interactions in chemical systems, halogen bonding and hydrogen bonding. We also demonstrate that As-centered pnictogen bonds are usually accompanied by other primary and secondary interactions, which reinforce their occurrence and strength in most of the crystal structures illustrated. A statistical analysis of structures deposited into the CSD was performed for each interaction type As···D (D = N, O, S, Se, Te, F, Cl, Br, I, arene's π system), thus providing insight into the typical nature of As···D interaction distances and ∠R-As···D bond angles of these interactions in crystals, where R is the remainder of the molecular entity.


Asunto(s)
Arsénico , Halógenos/química , Enlace de Hidrógeno
6.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563065

RESUMEN

A stibium bond, i.e., a non-covalent interaction formed by covalently or coordinately bound antimony, occurs in chemical systems when there is evidence of a net attractive interaction between the electrophilic region associated with an antimony atom and a nucleophile in another, or the same molecular entity. This is a pnictogen bond and are likely formed by the elements of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction. This overview describes a set of illustrative crystal systems that were stabilized (at least partially) by means of stibium bonds, together with other non-covalent interactions (such as hydrogen bonds and halogen bonds), retrieved from either the Cambridge Structure Database (CSD) or the Inorganic Crystal Structure Database (ICSD). We demonstrate that these databases contain hundreds of crystal structures of various dimensions in which covalently or coordinately bound antimony atoms in molecular entities feature positive sites that productively interact with various Lewis bases containing O, N, F, Cl, Br, and I atoms in the same or different molecular entities, leading to the formation of stibium bonds, and hence, being partially responsible for the stability of the crystals. The geometric features, pro-molecular charge density isosurface topologies, and extrema of the molecular electrostatic potential model were collectively examined in some instances to illustrate the presence of Sb-centered pnictogen bonding in the representative crystal systems considered.


Asunto(s)
Antimonio , Halógenos , Halógenos/química , Enlace de Hidrógeno , Modelos Moleculares , Electricidad Estática
7.
Molecules ; 27(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268588

RESUMEN

The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. In this overview, we provide the reader with a snapshot of the nature, and possible occurrences, of phosphorus-centered pnictogen bonding in illustrative chemical crystal systems drawn from the ICSD (Inorganic Crystal Structure Database) and CSD (Cambridge Structural Database) databases, some of which date back to the latter part of the last century. The illustrative systems discussed are expected to assist as a guide to researchers in rationalizing phosphorus-centered pnictogen bonding in the rational design of molecular complexes, crystals, and materials and their subsequent characterization.

8.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163185

RESUMEN

Layered two-dimensional transition metal dichalcogenides and their heterostructures are of current interest, owing to the diversity of their applications in many areas of materials nanoscience and technologies. With this in mind, we have examined the three molecular dimers of the tungsten dichalcogenide series, (WCh2)2 (Ch = S, Se, Te), using density functional theory to provide insight into which interactions, and their specific characteristics, are responsible for the interfacial/interlayer region in the room temperature 2H phase of WCh2 crystals. Our calculations at various levels of theory suggested that the Te···Te chalcogen bonding in (WTe2)2 is weak, whereas the Se···Se and S···S bonding interactions in (WSe2)2 and (WS2)2, respectively, are of the van der Waals type. The presence and character of Ch···Ch chalcogen bonding interactions in the dimers of (WCh2)2 are examined with a number of theoretical approaches and discussed, including charge-density-based approaches, such as the quantum theory of atoms in molecules, interaction region indicator, independent gradient model, and reduced density gradient non-covalent index approaches. The charge-density-based topological features are shown to be concordant with the results that originate from the extrema of potential on the electrostatic surfaces of WCh2 monomers. A natural bond orbital analysis has enabled us to suggest a number of weak hyperconjugative charge transfer interactions between the interacting monomers that are responsible for the geometry of the (WCh2)2 dimers at equilibrium. In addition to other features, we demonstrate that there is no so-called van der Waals gap between the monolayers in two-dimensional layered transition metal tungsten dichalcogenides, which are gapless, and that the (WCh2)2 dimers may be prototypes for a basic understanding of the physical chemistry of the chemical bonding environments associated with the local interfacial/interlayer regions in layered 2H-WCh2 nanoscale systems.


Asunto(s)
Calcógenos/química , Compuestos de Tungsteno/química , Tungsteno/química , Calcógenos/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Teoría Cuántica , Electricidad Estática , Elementos de Transición , Compuestos de Tungsteno/metabolismo
9.
Front Chem ; 8: 796, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195026

RESUMEN

A-Site doping with alkali ions, and/or metal substitution at the B and B'-sites, are among the key strategies in the innovative development of A 2BB'X6 halide double perovskite semiconducting materials for application in energy and device technologies. To this end, we have investigated an intriguing series of five halide-based non-toxic systems, A 2AgRhCl6 (A = Li, Na, K, Rb, and Cs), using density functional theory at the SCAN-rVV10 level. The lattice stability and bonding properties emanating from this study of A 2AgRhCl6 matched well with those that have already been synthesized, characterized and discussed [viz. Cs2AgBiX6 (X = Cl, Br)]. Exploration of traditional and recently proposed tolerance factors has enabled us to identify A 2AgRhCl6 (A = K, Rb and Cs) as stable double perovskites. The band structure and density of states calculations suggested that the electronic transition from the top of the valence band [Cl(3p)+Rh(4d)] to the bottom of the conduction band [(Cl(3p)+Rh(4d)] is inherently direct at the X-point of the first Brillouin zone. The (non-spin polarized) bandgap of these materials was found in the range 0.57-0.65 eV with SCAN-rVV10, which were substantially smaller than those computed with hybrid HSE06 and PBE0, and quasi-particle GW methods. This, together with the appreciable refractive index and high absorption coefficient in the region covering the range 1.0-4.5 eV, enabled us to demonstrate that A 2AgRhCl6 (A = K, Rb, and Cs) are likely candidate materials for photoelectric applications. The results of our phonon calculations at the harmonic level suggested that the Cs2AgRhCl6 is the only system that is dynamically stable (no imaginary frequencies found around the high symmetry lines of the reciprocal lattice), although the elastic moduli properties suggested all five systems examined are mechanically stable.

10.
Phys Chem Chem Phys ; 21(36): 19969-19986, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31478046

RESUMEN

Several recent studies have shown that chalcogen bonds originate from the σ-holes localized on the electron-deficient surface of the Group 16 atoms (sulfur, selenium and tellurium) in molecules; however, the oxygen atom in molecules does not appear to form such a bond. In this study, we have considered oxygen difluoride (OF2) as a prototypical Lewis acid, and 11 Lewis bases as partner interacting species (CH3F, CH3Cl, CH3Br, H2CO, HFCO, HF, SO, CH3CN, PN, HSCN and HCN). Their complexes are examined using DFT-M06-2X and ab initio first-principles calculations at the MP2 level of theory, in conjunction with Dunning's all-electron correlated basis set aug-cc-pVTZ. The results that emerge from the equilibrium geometries, molecular electrostatic surface potential, second order natural bond orbital, quantum theory of atoms in molecules, reduced density gradient and independent gradient model noncovalent analyses tools, as well as from binding energy calculations, demonstrate that oxygen is indeed capable of forming a chalcogen bond. We show that the σ-holes on O along the F-O bond extensions in OF2 are positive, and can readily participate in chalcogen bonding (and other secondary interactions) with Lewis bases, thus providing stability to the geometries of all the 12 binary complexes examined. Finally, we demonstrate that without invoking charge density topologies the often used electrostatic surface potential model is certainly inadequate for the exploration of the noncovalent topology of bonding interactions in the majority of the dimers examined.

11.
Sci Rep ; 9(1): 10650, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337790

RESUMEN

When acids are supplied with an excess electron (or placed in an Ar or the more polarizable N2 matrix) in the presence of species such as NH3, the formation of ion-pairs is a likely outcome. Using density functional theory and first-principles calculations, however, we show that, without supplying an external electron or an electric field, or introducing photo-excitation and -ionization, a single molecule of HCl or HBr in the presence of a single molecule of water inside a C70 fullerene cage is susceptible to cleavage of the σ-bond of the Brønsted-Lowry acid into X- and H+ ions, with concomitant transfer of the proton along the reaction coordinate. This leads to the formation of an X-···+HOH2 (X = Cl, Br) conjugate acid-base ion-pair, similar to the structure in water of a Zundel ion. This process is unlikely to occur in other fullerene derivatives in the presence of H2O without significantly affecting the geometry of the carbon cage, suggesting that the interior of C70 is an ideal catalytic platform for proton transfer reactions and the design of related novel materials. By contrast, when a single molecule of HF is reacted with a single molecule of H2O inside the C70 cage, partial proton transfers from HF to H2O is an immediate consequence, as recently observed experimentally. The geometrical, energetic, electron density, orbital, optoelectronic and vibrational characteristics supporting these observations are presented. In contrast with the views that have been advanced in several recent studies, we show that the encaged species experiences significant non-covalent interaction with the interior of the cage. We also show that the inability of current experiments to detect many infrared active vibrational bands of the endo species in these systems is likely to be a consequence of the substantial electrostatic screening effect of the cage.

12.
J Comput Chem ; 40(20): 1836-1860, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31017721

RESUMEN

The wide occurrence of halogen-centered noncovalent interactions in crystal growth and design prompted this study, which includes a mini review of recent advances in the field. Particular emphasis is placed on providing compelling theoretical evidence of the formation of these interactions between sites of positive electrostatic potential, as well as between sites of negative electrostatic potential, localized on the electrostatic surfaces of the bound fluorine atoms in a prototypical system, hexafluoropropylene (C3 F6 ), upon its interaction with another same molecule to form (C3 F6 )2 dimers. The existence of σ- and π-hole interactions is shown for the stable dimers. Even so, weakly bound interactions locally responsible in holding the molecular fragments together cannot and should not be overlooked since they are partly responsible for determining the overall geometry of the crystal. The results of combined quantum theory of atoms in molecules, molecular electrostatic surface potential, and reduced density gradient noncovalent interaction analyses showed that these latter interactions do indeed play a role in the stability and growth of crystalline C3 F6 itself and the (C3 F6 )2 dimers. A symmetry adapted perturbation theory energy decomposition analysis leads to the conclusion that a great majority of the (C3 F6 )2 dimers examined are the consequence of dispersion (and electrostatics), with nonnegligible contribution from polarization, which together competes with an exchange repulsion component to determine the equilibrium geometries. In a few structures of the (C3 F6 )2 dimer, the fluorine is found to serve as a six-center five-bond donor/acceptor, as found for carbon in other systems (Malischewski and Seppelt, Angew. Chem. Int. Ed. 2017, 56, 368). © 2019 Wiley Periodicals, Inc.

13.
Molecules ; 24(3)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678158

RESUMEN

Can two sites of positive electrostatic potential localized on the outer surfaces of two halogen atoms (and especially fluorine) in different molecular domains attract each other to form a non-covalent engagement? The answer, perhaps counterintuitive, is yes as shown here using the electronic structures and binding energies of the interactions for a series of 22 binary complexes formed between identical or different atomic domains in similar or related halogen-substituted molecules containing fluorine. These were obtained using various computational approaches, including density functional and ab initio first-principles theories with M06-2X, RHF, MP2 and CCSD(T). The physical chemistry of non-covalent bonding interactions in these complexes was explored using both Quantum Theory of Atoms in Molecules and Symmetry Adapted Perturbation Theories. The surface reactivity of the 17 monomers was examined using the Molecular Electrostatic Surface Potential approach. We have demonstrated inter alia that the dispersion term, the significance of which is not always appreciated, which emerges either from an energy decomposition analysis, or from a correlated calculation, plays a structure-determining role, although other contributions arising from electrostatic, exchange-repulsion and polarization effects are also important. The 0.0010 a.u. isodensity envelope, often used for mapping the electrostatic potential is found to provide incorrect information about the complete nature of the surface reactive sites on some of the isolated monomers, and can lead to a misinterpretation of the results obtained.


Asunto(s)
Flúor/química , Modelos Químicos , Modelos Moleculares , Electricidad Estática , Halógenos/química
14.
Sci Rep ; 9(1): 50, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631082

RESUMEN

The CH3NH3PbI3 (methylammonium lead triiodide) perovskite semiconductor system has been viewed as a blockbuster research material during the last five years. Because of its complicated architecture, several of its technological, physical and geometrical issues have been examined many times. Yet this has not assisted in overcoming a number of problems in the field nor in enabling the material to be marketed. For instance, these studies have not clarified the nature and type of hydrogen bonding and other noncovalent interactions involved; the origin of hysteresis; the actual role of the methylammonium cation; the nature of polarity associated with the tetragonal geometry; the unusual origin of various frontier orbital contributions to the conduction band minimum; the underlying phenomena of spin-orbit coupling that causes significant bandgap reduction; and the nature of direct-to-indirect bandgap transition features. Arising from many recent reports, it is now a common belief that the I···H-N interaction formed between the inorganic framework and the ammonium group of CH3NH3+ is the only hydrogen bonded interaction responsible for all temperature-dependent geometrical polymorphs of the system, including the most stable one that persists at low-temperatures, and the significance of all other noncovalent interactions has been overlooked. This study focussed only on the low temperature orthorhombic polymorph of CH3NH3PbI3 and CD3ND3PbI3, where D refers deuterium. Together with QTAIM, DORI and RDG based charge density analyses, the results of density functional theory calculations with PBE with and without van der Waals corrections demonstrate that the prevailing view of hydrogen bonding in CH3NH3PbI3 is misleading as it does not alone determine the a-b+a- tilting pattern of the PbI64- octahedra. This study suggests that it is not only the I···H/D-N, but also the I···H/D-C hydrogen/deuterium bonding and other noncovalent interactions (viz. tetrel-, pnictogen- and lump-hole bonding interactions) that are ubiquitous in the orthorhombic CH3NH3PbI3/CD3ND3PbI3 perovskite geometry. Their interplay determines the overall geometry of the polymorph, and are therefore responsible in part for the emergence of the functional optical properties of this material. This study also suggests that these interactions should not be regarded as the sole determinants of octahedral tilting since lattice dynamics is known to play a critical role as well, a common feature in many inorganic perovskites both in the presence and the absence of the encaged cation, as in CsPbI3/WO3 perovskites, for example.

15.
J Comput Chem ; 39(23): 1902-1912, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30247769

RESUMEN

Methylammonium lead trihalides and their derivatives are photovoltaic materials. CH3 NH3 PbI3 is the most efficient light harvester among all the known halide perovskites (PSCs). It is regarded as unsuitable for long-term stable solar cells, thus it is necessary to develop other types of PSC materials to achieve stable PSCs (Wang et al., Nat. Energy 2016, 2, 16195). Because of this, various research efforts are on-going to discover novel lead-based or lead-free single/double PSCs, which can be stable, synthesizable, transportable, abundant and efficient in solar energy conversion. Keeping these factors in mind, we report here the electronic structures, energetic stabilities and some materials properties (viz. band structures, density of states spectra and photo-carrier masses) of the PSC chloroammonium lead triiodide (ClNH3 PbI3 ). This emerges through compositional engineering that often focuses on B- and Y-site substitutions within the domain of the BMY3 PSC stoichiometry. ClNH3 PbI3 is found to be stable as orthorhombic and pseudocubic polymorphs, which are analogous with the low and high temperature polymorphs of CH3 NH3 PbI3 . The bandgap of ClNH3 PbI3 (values between 1.28 and 1.60 eV) is found to be comparable with that of CH3 NH3 PbI3 , (1.58 eV), both obtained with periodic DFT at the PBE level of theory. Spin orbit coupling is shown to have a pronounced effect on both the magnitude and character of the bandgap. The computed results show that ClNH3 PbI3 may act as a competitor for CH3 NH3 PbI3 for photovoltaics. © 2018 Wiley Periodicals, Inc.

16.
Phys Chem Chem Phys ; 20(22): 15316-15329, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29796486

RESUMEN

A set of six binary complexes that feature iodine-centered halogen bonding, extracted from structures deposited in the Cambridge Structure Database, has been examined computationally using density functional theory calculations with the M06-2X global hybrid, and dispersion corrected B3LYP-D3 and B97-D3, to determine their equilibrium geometries, binding energies and electronic properties. The results show that gas phase calculations are very informative in evaluating what occurs in the solid state, even though these calculations ignore the importance of lattice packing and counter ion effects. The calculated binding energies for the non-covalent interactions responsible for these complexes lie between -4.15 and -7.48 kcal mol-1 (M06-2X), which enables us to characterize them as weak-to-moderate in strength. The basis set superposition error energies are calculated to vary between 0.60 and 2.42 kcal mol-1 for all the complexes examined, even though an all-electron QZP basis set used in the analysis was of quadrupole-ζ (plus polarization) quality. Dispersion is found to have a profound effect on the binding energy of some of these complexes, and was estimated to be as large as 5.0 kcal mol-1. For one complex, the crystal geometry could not be precisely reproduced using a gas phase calculation. While both halogen- and hydrogen-bonding interactions were found competitive, they cooperate with each other to determine the stable configuration of the binary complex. The molecular electrostatic surface potential, quantum theory of atoms in molecules, and reduced density gradient non-covalent Interaction models were utilized to arrive at a fundamental understanding of the various inter- and intra-molecular molecular interactions involved, as well as some other previously-overlooked non-covalent interactions that emerge in the modelling.

17.
Chemphyschem ; 19(12): 1486-1499, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29569853

RESUMEN

We examine the equilibrium structure and properties of six fully or partially fluorinated hydrocarbons and several of their binary complexes using computational methods. In the monomers, the electrostatic surface of the fluorine is predicted to be either entirely negative or weakly positive. However, its lateral sites are always negative. This enables the fluorine to display an anisotropic distribution of charge density on its electrostatic surface. While this is the electrostatic surface scenario of the fluorine atom, its negative sites in some of these monomers are shown to have the potential to engage in attractive engagements with the negative site(s) on the same atom in another molecule of the same type, or a molecule of a different type, to form bimolecular complexes. This is revealed by analyzing the results of current state-of-the-art computational approaches such as DFT, together with those obtained from the quantum theory of atoms in molecules, molecular electrostatic surface potential and symmetry adapted perturbation theories. We demonstrate that the intermolecular interaction energy arising in part from the universal London dispersion, which has been underappreciated for decades, is an essential factor in explaining the attraction between the negative sites, although energy arising from polarization strengthens the extent of the intermolecular interactions in these complexes.

18.
Eur J Med Chem ; 126: 353-368, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27907874

RESUMEN

A small library of novel copper and zinc imidazo[1,2-a]pyridine complexes have been synthesized. Their structures were confirmed by X-ray diffraction crystallography and a selection of these compounds was tested against five cancer cell lines originating from breast cancer (MCF-7 and MDA-MB-231), leukemia (K562 and HL-60) and colorectal cancer (HT-29). The imidazo[1,2-a]pyridines and their zinc complexes showed poor anticancer activity, while the copper complexes were active against the cancer cell lines with IC50 values comparable to and lower than camptothecin. For example, copper 6-bromo-N-cyclohexyl-2-(pyridin-2-yl)imidazo[1,2-a]pyridin-3-amine acetate 21 had an IC50 value lower than 1 µM against the HT-29 cells. Fluorescence microscopy with acridine orange, Hoechst 33342 and ethidium bromide, used in a preliminary investigation to evaluate morphological changes showed that copper 6-bromo-N-cyclohexyl-2-(pyridin-2-yl)imidazo[1,2-a]pyridin-3-amine acetate 21 caused both apoptosis, necrosis and paraptosis in the MCF-7 and HL-60 cells. A select group of copper N-cyclohexyl-2-(pyridin-2-yl)imidazo[1,2-a]pyridin-3-amines (26, 27, 29 and 31) induced apoptosis, paraptosis and deformed nuclei in MCF-7 cells.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Cobre/química , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/farmacología , Piridinas/química , Zinc/química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Células HL-60 , Humanos , Células MCF-7 , Compuestos Organometálicos/química
19.
Inorg Chem ; 53(9): 4418-29, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24721109

RESUMEN

The synthesis of a Co(III) corrole, [10-(2-[[4-(1H-imidazol-1-ylmethyl)benzoyl]amino]phenyl)-5,15-diphenylcorrolato]cobalt(III), DPTC-Co, bearing a tail motif terminating in an imidazole ligand that coordinates Co(III), is described. The corrole therefore places Co(III) in a similar environment to that in aquacobalamin (vitamin B12a, H2OCbl(+)) but with a different equatorial ligand. In coordinating solvents, DPTC-Co is a mixture of five- and six-coordinate species, with a solvent molecule occupying the axial coordination site trans to the proximal imidazole ligand. In an 80:20 MeOH/H2O solution, allowed to age for about 1 h, the predominant species is the six-coordinate aqua species [H2O-DPTC-Co]. It is monomeric at least up to concentrations of 60 µM. The coordinated H2O has a pKa = 9.76(6). Under the same conditions H2OCbl(+) has a pKa = 7.40(2). Equilibrium constants for the substitution of coordinated H2O by exogenous ligands are reported as log K values for neutral N-, P-, and S-donor ligands, and CN(-), NO2(-), N3(-), SCN(-), I(-), and Cys in 80:20 MeOH/H2O solution at low ionic strength. The log K values for [H2O-DPTC-Co] correlate reasonably well with those for H2OCbl(+); therefore, Co(III) displays a similar behavior toward these ligands irrespective of whether the equatorial ligand is a corrole or a corrin. Pyridine is an exception; it is poorly coordinated by H2OCbl(+) because of the sterically hindered coordination site of the corrin. With few exceptions, [H2O-DPTC-Co] has a higher affinity for neutral ligands than H2OCbl(+), but the converse is true for anionic ligands. Density functional theory (DFT) models (BP86/TZVP) show that the Co-ligand bonds tend to be longer in corrin than in corrole complexes, explaining the higher affinity of the latter for neutral ligands. It is argued that the residual charge at the metal center (+2 in corrin, 0 in corrole) increases the affinity of H2OCbl(+) for anionic ligands through an electrostatic attraction. The topological properties of the electron density in the DFT-modeled compounds are used to explore the nature of the bonding between the metal and the ligands.


Asunto(s)
Porfirinas/química , Vitamina B 12/análogos & derivados , Ligandos , Espectroscopía de Resonancia Magnética , Espectrofotometría Ultravioleta , Vitamina B 12/síntesis química , Vitamina B 12/química , Difracción de Rayos X
20.
Chem Commun (Camb) ; 50(13): 1582-4, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24382418

RESUMEN

An octadentate cyclen-based europium complex with amidic and hydroxyalkyl pendent moieties exhibits pH dependent ligand denticity associated with anion recognition. Unusually high hydration numbers are determined for ortho-phthalate ternary outer-sphere complexes for which modulation of lanthanide-based luminescence is observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...