RESUMEN
Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas.
Asunto(s)
Reacción de Prevención/fisiología , Conducta Animal/fisiología , Aves/fisiología , Quirópteros/fisiología , Proyectos de Investigación , Animales , Brasil , Ecosistema , Proyectos de Investigación/normas , Muestreo , Especificidad de la EspecieRESUMEN
1. River system dynamics results in ecological heterogeneities that play a central role in maintaining biodiversity in riverine regions. In central Amazonia, large expanses of forest are seasonally flooded by nutrient-rich water (várzea forests) or by nutrient-poor water (igapó forests). Inundation patterns and the nutrient load of floodwaters are perhaps the most important abiotic factors determining spatial ecological variations in lowland Amazonia, and so they are expected to strongly influence the structuring of animal communities. 2. We examined how inundation patterns and water-nutrient load influence the structure of neotropical assemblages of bats, one of the most diverse vertebrate groups in tropical forests. Bat assemblages were sampled with mist nets in central Brazilian Amazonia, across a mosaic of várzea, igapó, and non-flooding nutrient-poor terra firme forests in the low- and high-water seasons. 3. An ordination analysis clearly separated the assemblages of the three forest types, demonstrating the structural relevance of both flooding and floodwater-nutrient load. Flooded forests had lower species richness because of the absence or rarity of species that make roosts out of leaves of understorey plants, and of those that feed on fruits of shrubs. Gleaning insectivores, also partly dependent on the understorey, were less abundant in flooded forests, but aerial insectivores more abundant, presumably because they benefited from a less cluttered foraging environment. These differences suggest that flooding affects bat assemblages mostly because it reduces the availability of niches associated with understorey vegetation, which tends to be sparser in flooded forests. 4. Nutrient-rich várzea forests had a bat biomass twice that of nutrient-poor igapó and unflooded forests. This difference was not only mostly due to a greater overall abundance of bats, but also attributable to a disproportionate higher abundance of large-bodied bat species. 5. We concluded that both flooding and floodwater-nutrient load are very important in the structuring of lowland Amazonian bat assemblages, with inundation mostly constraining the species composition of the assemblages, and water-nutrient load mostly influencing the abundance of species. The distinctiveness of bat assemblages associated with flooding emphasizes the need to preserve inundated forests, which are under particular pressure in Amazonia.