Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
Microorganisms ; 12(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399802

RESUMEN

This study tested the hypothesis that cocoa monoculture (MS) and cocoa-açai agroforestry systems (AFS) may influence the microbial community structure and populations of plant growth-promoting bacteria (PGPR). Accordingly, the aim was to analyze the microbial community structure and PGPR populations in different agroecosystems in the Brazilian Amazon. To achieve this, the rhizosphere microbial community of cocoa and açai plants in both Amazonian seasons (dry and rainy) was analyzed using culture-dependent (PGPR screening) and -independent methods [PCR-DGGE based on rrs, alp, nifH gene, and intergenic region (ITS) of fungi]. Concerning PGPR screening, out of 48 isolated bacterial strains, 25% were capable of siderophore production, 29% of mineralized organic phosphate, 8% of inorganic phosphate solubilization, and 4% of indole acetic acid production. Moreover, 17% of isolates could inhibit the growth of various phytopathogenic fungi. Statistical analyses of DGGE fingerprints (p < 0.05) showed that bacterial and fungal community structures in the rhizosphere were influenced by the seasons, supporting the results of the physicochemical analysis of the environment. Furthermore, as hypothesized, microbial communities differed statistically when comparing the MS and AFS. These findings provide important insights into the influence of climate and cultivation systems on soil microbial communities to guide the development of sustainable agricultural practices.

2.
Front Microbiol ; 11: 610524, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488551

RESUMEN

The açai palm (Euterpe oleracea) is native to the Amazon basin, a humid tropical forest. High levels of total mesophilic bacteria with high diversity have been consistently reported in açai fruits. As local consumers have few digestive problems, the results of the present study reveal the lactic acid bacteria (LAB) recovered from açai fruits with characteristics that suggest they are possible candidates for probiotics and antagonistic potential against pathogens for the first time. Açai fruits were sampled from five different locations in the Eastern Amazonia floodplains. Sixty-six isolates were recovered from fruits and tested for some probiotic characteristics following FAO/WHO guidelines. Approximately 65% of the isolates showed no catalase or oxidase activity, Gram-positive staining or cocci and bacilli cell morphology. Furthermore, 48% of the isolates demonstrated preliminary characteristics that suggest safety for use, as they presented no coagulase enzyme activity or gamma-hemolysis. These strains were identified as belonging to the genera Lactiplantibacillus and Pediococcus, and 32 strains also presented resistance to vancomycin, ciprofloxacin and streptomycin. In addition, 28 isolates showed a survival rate, expressed as log cycle reduction, higher than 0.9 under gastric conditions (pH 2). All strains tested positive in bile salts deconjugation tests and showed a survival rate higher than 0.8 in the presence of this salt. Regarding antimicrobial activity against pathogens, all strains were able to inhibit Salmonella Typhimurium (ATCC® 14028TM) and 97% were capable of inhibiting Escherichia coli (ATCC® 25922TM). Concerning the results of in vitro antagonistic assays, three isolates (B125, B135, and Z183 strains) were selected for antagonistic tests using açai juice contaminated with these two pathogens. All tested LAB strains were able to inhibit pathogen growth in açai juice. In summary, açai fruits are a potential source of LAB isolates to be investigated as probiotics.

3.
Antonie Van Leeuwenhoek ; 112(4): 501-512, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30306462

RESUMEN

Sweet potato is a subsistence crop cultivated worldwide. Although it is generally considered tolerant to different diseases, it is quite susceptible to the fungus Plenodomus destruens that causes foot-rot disease. Plant growth-promoting bacteria associated with sweet potato remain poorly studied, but some Bacillus strains may have potential as biological control agents. Here, we evaluate the persistence of two bacterial strains-Bacillus safensis T052-76 and Bacillus velezensis T149-19-in pot experiments and assess their impact on indigenous bacterial and fungal communities associated with sweet potato. Numbers of cells of both strains introduced into pots remained stable in the rhizosphere of sweet potato over the 180-day experiment. Denaturing gradient gel electrophoresis based on the rrs gene encoding bacterial 16S rRNA and the fungal ribosomal internal transcribed spacer region showed that bands corresponding to the introduced strains were not detected in plant endosphere. PERMANOVA and non-metric multidimensional scaling statistical analyses showed that: (1) strain T052-76 altered the structure of the indigenous bacterial community (rhizosphere and soil) more than strain T149-19; (2) T052-76 slightly altered the structure of the indigenous fungal community (rhizosphere and soil) and (3) strain T149-19 did not disturb the fungal community. Our results demonstrate the stability of both Bacillus strains in the sweet potato rhizosphere and, apart from the influence of B. safensis T052-76 on the bacterial community, their limited impact on the microbial community associated with this important crop plant.


Asunto(s)
Bacillus/fisiología , Ipomoea batatas/microbiología , Microbiota , Bacillus/genética , Bacillus/aislamiento & purificación , Hongos/genética , Hongos/fisiología , Rizosfera , Microbiología del Suelo
4.
Genome Announc ; 5(13)2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28360158

RESUMEN

We report here the draft genome sequence of Corynebacterium pseudotuberculosis PA05, isolated from an ovine host in Pará State, Brazil. C. pseudotuberculosis is an etiological agent of diseases with veterinary and medical importance. The genome contains 2,435,137 bp, a G+C content of 52.2%, 2,295 coding sequences, five pseudogenes, 53 tRNAs, and six rRNAs.

5.
Genome Announc ; 5(13)2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28360159

RESUMEN

We report here the draft genome sequence of Corynebacterium pseudotuberculosis PA06, isolated from a subauricular abscess in an ovine host. C. pseudotuberculosis is a worldwide pathogen of small and large ruminants. The genome comprises 2,320,074 bp, with a G+C content of 52.2%, 2,195 coding sequences, 48 tRNAs, and three rRNAs.

6.
Molecules ; 22(4)2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28422054

RESUMEN

Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Industria del Petróleo y Gas , Aceites Volátiles/farmacología , Sulfatos/metabolismo , Agua , Bacterias/genética , Pruebas de Sensibilidad Microbiana
7.
Genome Announc ; 5(12)2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28336591

RESUMEN

In this work, we present the draft genome sequence of Corynebacterium pseudotuberculosis strain PA07 biovar ovis, isolated from a caseous secretion from a sheep udder in Pará, Brazil. The genome contains 2,320,235 bp, 52.2% G+C content, 2,191 coding sequences (CDSs), five pseudogenes, 48 tRNAs, and three rRNAs.

8.
Braz. j. microbiol ; 47(3): 603-609, July-Sept. 2016. graf
Artículo en Inglés | LILACS | ID: lil-788982

RESUMEN

ABSTRACT Streptomyces lunalinharesii strain 235 produces an antimicrobial substance that is active against sulfate reducing bacteria, the major bacterial group responsible for biofilm formation and biocorrosion in petroleum reservoirs. The use of this antimicrobial substance for sulfate reducing bacteria control is therefore a promising alternative to chemical biocides. In this study the antimicrobial substance did not interfere with the biofilm stability, but the sulfate reducing bacteria biofilm formation was six-fold smaller in carbon steel coupons treated with the antimicrobial substance when compared to the untreated control. A reduction in the most probable number counts of planktonic cells of sulfate reducing bacteria was observed after treatments with the sub-minimal inhibitory concentration, minimal inhibitory concentration, and supra-minimal inhibitory concentration of the antimicrobial substance. Additionally, when the treated coupons were analyzed by scanning electron microscopy, the biofilm formation was found to be substantially reduced when the supra-minimal inhibitory concentration of the antimicrobial substance was used. The coupons used for the biofilm formation had a small weight loss after antimicrobial substance treatment, but corrosion damage was not observed by scanning electron microscopy. The absence of the dsrA gene fragment in the scraped cell suspension after treatment with the supra-minimal inhibitory concentration of the antimicrobial substance suggests that Desulfovibrio alaskensis was not able to adhere to the coupons. This is the first report on an antimicrobial substance produced by Streptomyces active against sulfate reducing bacteria biofilm formation. The application of antimicrobial substance as a potential biocide for sulfate reducing bacteria growth control could be of great interest to the petroleum industry.


Asunto(s)
Oxidación-Reducción , Streptomyces/fisiología , Sulfatos/metabolismo , Biopelículas , Antibiosis , Streptomyces/efectos de los fármacos , Streptomyces/ultraestructura , Pruebas de Sensibilidad Microbiana , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología
9.
Springerplus ; 5(1): 828, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27386277

RESUMEN

Eight strains isolated from the stems of Lippia sidoides were identified as belonging to Lactococcus lactis, a bacterial species considered as "generally recognized as safe". Their capacity to solubilize/mineralize phosphate was tested in vitro with different inorganic and organic phosphorus (P) sources. All strains were able to solubilize calcium phosphate as an inorganic P source, and the best result was observed with strain 003.41 which solubilized 31 % of this P source. Rock phosphate, a mined rock containing high amounts of phosphate bearing minerals, was solubilized by five strains. When calcium phytate was the organic P source used, the majority of the strains tested showed phosphate mineralization activity. Moreover, all strains were able to solubilize/mineralize phosphate from poultry litter, a complex P source containing inorganic and predominantly organic P. The presence of genes coding for phytase and alkaline phosphatase was searched within the strains studied. However, only gene sequences related to alkaline phosphatase (phoA and phoD) could be detected in the majority of the strains (excepting strain 006.29) with identities varying from 67 to 88 %. These results demonstrate for the first time the potential of L. lactis strains for phosphate solubilization/mineralization activity using a broad spectrum of P sources; therefore, they are of great importance for the future development of more safe bioinoculants with possible beneficial effects for agriculture.

10.
Braz J Microbiol ; 47(3): 603-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27266627

RESUMEN

Streptomyces lunalinharesii strain 235 produces an antimicrobial substance that is active against sulfate reducing bacteria, the major bacterial group responsible for biofilm formation and biocorrosion in petroleum reservoirs. The use of this antimicrobial substance for sulfate reducing bacteria control is therefore a promising alternative to chemical biocides. In this study the antimicrobial substance did not interfere with the biofilm stability, but the sulfate reducing bacteria biofilm formation was six-fold smaller in carbon steel coupons treated with the antimicrobial substance when compared to the untreated control. A reduction in the most probable number counts of planktonic cells of sulfate reducing bacteria was observed after treatments with the sub-minimal inhibitory concentration, minimal inhibitory concentration, and supra-minimal inhibitory concentration of the antimicrobial substance. Additionally, when the treated coupons were analyzed by scanning electron microscopy, the biofilm formation was found to be substantially reduced when the supra-minimal inhibitory concentration of the antimicrobial substance was used. The coupons used for the biofilm formation had a small weight loss after antimicrobial substance treatment, but corrosion damage was not observed by scanning electron microscopy. The absence of the dsrA gene fragment in the scraped cell suspension after treatment with the supra-minimal inhibitory concentration of the antimicrobial substance suggests that Desulfovibrio alaskensis was not able to adhere to the coupons. This is the first report on an antimicrobial substance produced by Streptomyces active against sulfate reducing bacteria biofilm formation. The application of antimicrobial substance as a potential biocide for sulfate reducing bacteria growth control could be of great interest to the petroleum industry.


Asunto(s)
Antibiosis , Biopelículas , Oxidación-Reducción , Streptomyces/fisiología , Sulfatos/metabolismo , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Streptomyces/efectos de los fármacos , Streptomyces/ultraestructura
11.
BMC Microbiol ; 15: 240, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26511622

RESUMEN

BACKGROUND: Biosurfactants are surface-active biomolecules with great applicability in the food, pharmaceutical and oil industries. Endospore-forming bacteria, which survive for long periods in harsh environments, are described as biosurfactant producers. Although the ubiquity of endospore-forming bacteria in saline and hypersaline environments is well known, studies on the diversity of the endospore-forming and biosurfactant-producing bacterial genera/species in these habitats are underrepresented. METHODS: In this study, the structure of endospore-forming bacterial communities in sediment/mud samples from Vermelha Lagoon, Massambaba, Dois Rios and Abraão Beaches (saline environments), as well as the Praia Seca salterns (hypersaline environments) was determined via denaturing gradient gel electrophoresis. Bacterial strains were isolated from these environmental samples and further identified using 16S rRNA gene sequencing. Strains presenting emulsification values higher than 30 % were grouped via BOX-PCR, and the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20 % NaCl to test their emulsifying activities in these extreme conditions. Mass spectrometry analysis was used to demonstrate the presence of surfactin. RESULTS: A diverse endospore-forming bacterial community was observed in all environments. The 110 bacterial strains isolated from these environmental samples were molecularly identified as belonging to the genera Bacillus, Thalassobacillus, Halobacillus, Paenibacillus, Fictibacillus and Paenisporosarcina. Fifty-two strains showed emulsification values of at least 30%, and they were grouped into 18 BOX groups. The stability of the emulsification values varied when the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20% NaCl. The presence of surfactin was demonstrated in one of the most promising strains. CONCLUSION: The environments studied can harbor endospore-forming bacteria capable of producing biosurfactants with biotechnological applications. Various endospore-forming bacterial genera/species are presented for the first time as biosurfactant producers.


Asunto(s)
Bacterias Aerobias/aislamiento & purificación , Bacterias Aerobias/metabolismo , Bacterias Formadoras de Endosporas/aislamiento & purificación , Bacterias Formadoras de Endosporas/metabolismo , Microbiología Ambiental , Tensoactivos/metabolismo , Bacterias Aerobias/clasificación , Bacterias Aerobias/genética , Brasil , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Bacterias Formadoras de Endosporas/clasificación , Bacterias Formadoras de Endosporas/genética , Espectrometría de Masas , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo
12.
Colloids Surf B Biointerfaces ; 136: 14-21, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26350801

RESUMEN

A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR.


Asunto(s)
Bacillus/metabolismo , Biotecnología , Petróleo , Tensoactivos/metabolismo , Emulsiones , Concentración de Iones de Hidrógeno , Cinética , Temperatura
13.
BMC Microbiol ; 14: 332, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25540019

RESUMEN

BACKGROUND: Despite all the benefits assigned to the genetically modified plants, there are still no sufficient data available in literature concerning the possible effects on the microbial communities associated with these plants. Therefore, this study was aimed at examining the effects of the genetic modifications of two transgenic maize genotypes (MON810--expressing the insecticidal Bt-toxin and TC1507--expressing the insecticidal Bt-toxin and the herbicide resistance PAT [phosphinothricin-N-acetyltransferase]) on their endophytic microbial communities, in comparison to the microbial community found in the near-isogenic non-transgenic maize (control). RESULTS: The structure of the endophytic communities (Bacteria, Archaea and fungi) and their composition (Bacteria) were evaluated by denaturing gradient gel electrophoresis (DGGE) and the construction of clone libraries, respectively. DGGE analysis and the clone libraries of the bacterial community showed that genotype TC1507 slightly differed from the other two genotypes. Genotype TC1507 showed a higher diversity within its endophytic bacterial community when compared to the other genotypes. Although some bacterial genera were found in all genotypes, such as the genera Burkholderia, Achromobacer and Stenotrophomonas, some were unique to genotype TC1507. Moreover, OTUs associated with Enterobacter predominated only in TC1507 clone libraries. CONCLUSION: The endophytic bacterial community of the maize genotype TC1507 differed from the communities of the maize genotype MON810 and of their near-isogenic parental genotypes (non-Bt or control). The differences observed among the maize genotypes studied may be associated with insertion of the gene coding for the protein PAT present only in the transgenic genotype TC1507.


Asunto(s)
Bacterias/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Zea mays/genética , Zea mays/microbiología , Endófitos/genética , Genotipo
14.
Appl Environ Microbiol ; 79(19): 5927-35, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23872573

RESUMEN

Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biota , Agua Dulce/microbiología , Hidrocarburos/metabolismo , Petróleo/metabolismo , Salinidad , Agua de Mar/microbiología , Bacterias/metabolismo , Brasil , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Agua Dulce/química , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/química , Análisis de Secuencia de ADN
15.
World J Microbiol Biotechnol ; 28(6): 2355-63, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22806109

RESUMEN

To better understand the impact of nitrate in Brazilian oil reservoirs under souring processes and corrosion, the goal of this study was to analyse the effect of nitrate on bacterial biofilms formed on carbon steel coupons using reactors containing produced water from a Brazilian oil platform. Three independent experiments were carried out (E1, E2 and E3) using the same experimental conditions and different incubation times (5, 45 and 80 days, respectively). In every experiment, two biofilm-reactors were operated: one was treated with continuous nitrate flow (N reactor), and the other was a control reactor without nitrate (C reactor). A Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis approach using the 16S rRNA gene was performed to compare the bacterial groups involved in biofilm formation in the N and C reactors. DGGE profiles showed remarkable changes in community structure only in experiments E2 and E3. Five bands extracted from the gel that represented the predominant bacterial groups were identified as Bacillus aquimaris, B. licheniformis, Marinobacter sp., Stenotrophomonas maltophilia and Thioclava sp. A reduction in the sulfate-reducing bacteria (SRB) most probable number counts was observed only during the longer nitrate treatment (E3). Carbon steel coupons used for biofilm formation had a slightly higher weight loss in N reactors in all experiments. When the coupon surfaces were analysed by scanning electron microscopy, an increase in corrosion was observed in the N reactors compared with the C reactors. In conclusion, nitrate reduced the viable SRB counts. Nevertheless, the nitrate dosing increased the pitting of coupons.


Asunto(s)
Bacterias/genética , Reactores Biológicos/microbiología , Nitratos/farmacología , Acero , Anaerobiosis , Bacterias/clasificación , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Electroforesis en Gel de Gradiente Desnaturalizante , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...