Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 24(13): 14053-65, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27410566

RESUMEN

Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 µm to just a few µm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and -1316 nm/RIU, respectively.

2.
Opt Express ; 22(11): 13102-8, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24921506

RESUMEN

Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 µm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz.

3.
Opt Express ; 19(19): 18149-54, 2011 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-21935180

RESUMEN

Several configurations of ultralong Raman fiber lasers (URFL) based on a distributed mirror combined with Bragg gratings or fiber loop mirrors are studied. Two continuous-wave URFL configurations, with single and cascaded cavities using fiber Bragg gratings as mirrors are explored for a 300 km long fiber. For optical sensing, the cavity length was optimized for 250 km using one of the gratings an intensity sensor. Another URFL configuration based in a fiber loop mirror is also reported. For optical sensing using a 300 km long fiber it is shown that the best choice is a hybrid configuration. The sensitivity of the FBG laser sensor range was from (76 ± 2) × 10⁻6 µÎµâ»¹ (for lower strain) to (9.0 ± 0.4) × 10⁻6 µÎµâ»¹ (for higher strain).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...