Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(8): 4124-4136, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38554107

RESUMEN

Pharmacological modulation of RNA splicing by small molecules is an emerging facet of drug discovery. In this context, the SMN2 splicing modifier SMN-C5 was used as a prototype to understand the mode of action of small molecule splicing modifiers and propose the concept of 5'-splice site bulge repair. In this study, we combined in vitro binding assays and structure determination by NMR spectroscopy to identify the binding modes of four other small molecule splicing modifiers that switch the splicing of either the SMN2 or the HTT gene. Here, we determined the solution structures of risdiplam, branaplam, SMN-CX and SMN-CY bound to the intermolecular RNA helix epitope containing an unpaired adenine within the G-2A-1G+1U+2 motif of the 5'-splice site. Despite notable differences in their scaffolds, risdiplam, SMN-CX, SMN-CY and branaplam contact the RNA epitope similarly to SMN-C5, suggesting that the 5'-splice site bulge repair mechanism can be generalised. These findings not only deepen our understanding of the chemical diversity of splicing modifiers that target A-1 bulged 5'-splice sites, but also identify common pharmacophores required for modulating 5'-splice site selection with small molecules.


Asunto(s)
Diseño de Fármacos , Sitios de Empalme de ARN , Empalme del ARN , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Empalme del ARN/efectos de los fármacos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Conformación de Ácido Nucleico , Modelos Moleculares , Compuestos Azo , Pirimidinas
2.
J Mol Biol ; 436(2): 168359, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952768

RESUMEN

Nucleic acid sequences containing guanine tracts are able to form non-canonical DNA or RNA structures known as G-quadruplexes (or G4s). These structures, based on the stacking of G-tetrads, are involved in various biological processes such as gene expression regulation. Here, we investigated a G4 forming sequence, HIVpro2, derived from the HIV-1 promoter. This motif is located 60 nucleotides upstream of the proviral Transcription Starting Site (TSS) and overlaps with two SP1 transcription factor binding sites. Using NMR spectroscopy, we determined that HIVpro2 forms a hybrid type G4 structure with a core that is interrupted by a single nucleotide bulge. An additional reverse-Hoogsteen AT base pair is stacked on top of the tetrad. SP1 transcription factor is known to regulate transcription activity of many genes through the recognition of Guanine-rich duplex motifs. Here, the formation of HIVpro2 G4 may modulate SP1 binding sites architecture by competing with the formation of the canonical duplex structure. Such DNA structural switch potentially participates to the regulation of viral transcription and may also interfere with HIV-1 reactivation or viral latency.


Asunto(s)
G-Cuádruplex , VIH-1 , Factor de Transcripción Sp1 , Sitios de Unión , ADN/química , Guanina/química , VIH-1/genética , VIH-1/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Humanos , Regulación Viral de la Expresión Génica
3.
Biochimie ; 214(Pt A): 5-23, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36596406

RESUMEN

Besides the well-known DNA double-helix, non-canonical nucleic acid structures regulate crucial biological activities. Among these oddities, guanine-rich DNA sequences can form unusual four-stranded secondary structures called G-quadruplexes (G4s). G4-prone sequences have been found in the genomes of most species, and G4s play important roles in essential processes such as transcription, replication, genome integrity and epigenetic regulation. Here, we present a short overview of G-quadruplexes followed by a detailed description of the biophysical and biochemical methods used to characterize G4s in vitro. The principles, experimental details and possible shortcomings of each method are discussed to provide a comprehensive view of the techniques used to study these structures. We aim to provide a set of guidelines for standardizing research on G-quadruplexes; these guidelines are not meant to be a dogmatic set of rules, but should rather provide useful information on the methods currently used to study these fascinating motifs.


Asunto(s)
G-Cuádruplex , Epigénesis Genética , ADN/química , Genoma
4.
Front Chem ; 10: 1014663, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479439

RESUMEN

COVID-19 (Corona Virus Disease 2019), SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) are infectious diseases each caused by coronavirus outbreaks. Small molecules and other therapeutics are rapidly being developed to treat these diseases, but the threat of new variants and outbreaks argue for the identification of additional viral targets. Here we identify regions in each of the three coronavirus genomes that are able to form G-quadruplex (G4) structures. G4s are structures formed by DNA or RNA with a core of two or more stacked planes of guanosine tetrads. In recent years, numerous DNA and RNA G4s have emerged as promising pharmacological targets for the treatment of cancer and viral infection. We use a combination of bioinformatics and biophysical approaches to identify conserved RNA G4 regions from the ORF1A and S sequences of SARS-CoV, SARS-CoV-2 and MERS-CoV. Although a general depletion of G4-forming regions is observed in coronaviridae, the preservation of these selected G4 sequences support a significance in viral replication. Targeting these RNA structures may represent a new antiviral strategy against these viruses distinct from current approaches that target viral proteins.

5.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361696

RESUMEN

MST1R (RON) is a receptor of the MET tyrosine kinase receptor family involved in several cancers such as pancreas, breast, ovary, colon, and stomach. Some studies have shown that overexpression of MST1R increases the migratory and invasive properties of cancer cells. The promoter region of the oncogene MST1R is enriched in guanine residues that can potentially form G-quadruplexes (G4s), as it was observed in other oncogenic promoters such as KRAS and c-MYC. There is abundant literature that links the presence of G4s in promoter regions of oncogenes to diverse gene regulation processes that are not well understood. In this work, we have studied the reverse and forward sequence of MST1R promoter region using the G4Hunter software and performed biophysical studies to characterize the best scored sequences.


Asunto(s)
G-Cuádruplex , Regiones Promotoras Genéticas , Guanina/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proto-Oncogenes
6.
Nucleic Acids Res ; 50(12): 7134-7146, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736226

RESUMEN

The Caenorhabditis elegans model has greatly contributed to the understanding of the role of G-quadruplexes in genomic instability. The GGCTTA repeats of the C. elegans telomeres resemble the GGGTTA repeats of the human telomeres. However, the comparison of telomeric sequences (Homo sapiens, Tetrahymena, Oxytricha, Bombyx mori and Giardia) revealed that small changes in these repeats can drastically change the topology of the folded G-quadruplex. In the present work we determined the structure adopted by the C. elegans telomeric sequence d[GG(CTTAGG)3]. The investigated C. elegans telomeric sequence is shown to fold into an intramolecular two G-tetrads basket type G-quadruplex structure that includes a C-T base pair in the diagonal loop. This work sheds light on the telomeric structure of the widely used C. elegans animal model.


Asunto(s)
Caenorhabditis elegans , G-Cuádruplex , Telómero , Animales , Humanos , Emparejamiento Base , Caenorhabditis elegans/genética , Telómero/química
7.
ACS Omega ; 6(49): 34092-34106, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34926957

RESUMEN

Recent studies have proven that the genetic landscape of pancreatic cancer is dominated by the KRAS oncogene. Its transcription is controlled by a G-rich motif (called 32R) located immediately upstream of the TSS. 32R may fold into a G-quadruplex (G4) in equilibrium between two G4 conformers: G9T (T M = 61.2 °C) and G25T (T M = 54.7 °C). We found that both G4s bind to hnRNPA1 and its proteolytic fragment UP1, promoting several contacts with the RRM protein domains. 1D NMR analysis of DNA imino protons shows that, upon binding to UP1, G25T is readily unfolded at both 5' and 3' tetrads, while G9T is only partially unfolded. The impact of hnRNPA1 on KRAS expression was determined by comparing Panc-1 cells with two Panc-1 knockout cell lines in which hnRNPA1 was deleted by the CRISPR/Cas9 technology. The results showed that the expression of KRAS is inhibited in the knockout cell lines, indicating that hnRNPA1 is essential for the transcription of KRAS. In addition, the knockout cell lines, compared to normal Panc-1 cells, show a dramatic decrease in cell growth and capacity of colony formation. Pull-down and Western blot experiments indicate that conformer G25T is a better platform than conformer G9T for the assembly of the transcription preinitiation complex with PARP1, Ku70, MAZ, and hnRNPA1. Together, our data prove that hnRNPA1, being a key transcription factor for the activation of KRAS, can be a new therapeutic target for the rational design of anticancer strategies.

8.
Nucleic Acids Res ; 48(16): 9336-9345, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32432667

RESUMEN

KRAS is one of the most mutated oncogenes and still considered an undruggable target. An alternative strategy would consist in targeting its gene rather than the protein, specifically the formation of G-quadruplexes (G4) in its promoter. G4 are secondary structures implicated in biological processes, which can be formed among G-rich DNA (or RNA) sequences. Here we have studied the major conformations of the commonly known KRAS 32R, or simply 32R, a 32 residue sequence within the KRAS Nuclease Hypersensitive Element (NHE) region. We have determined the structure of the two major stable conformers that 32R can adopt and which display slow equilibrium (>ms) with each other. By using different biophysical methods, we found that the nucleotides G9, G25, G28 and G32 are particularly implicated in the exchange between these two conformations. We also showed that a triad at the 3' end further stabilizes one of the G4 conformations, while the second conformer remains more flexible and less stable.


Asunto(s)
ADN/genética , G-Cuádruplex , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Sitios de Unión/genética , Dicroismo Circular , Humanos , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/terapia , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores
9.
Biomol NMR Assign ; 12(1): 123-127, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29189986

RESUMEN

Single stranded guanine rich DNA (or RNA) sequences adopt noncanonical secondary structures called G-quadruplexes (G4). Functionally, quadruplexes control gene transcription and regulate activities such as replication, gene recombination or alternative splicing. Hence they are potential targets for cancer, neuronal, and viral related diseases. KRAS is one of the most mutated oncogenes in the genome of cancer cells and contains a nuclease hypersensitive element (NHE) sequence capable of forming G-quadruplexes via its six runs of guanines. In our work, we are interested in the NMR structure of the major G4 scaffold formed in the KRAS NHE region with a mutated sequence of 22 residues. Here, we report 1H, 13C and 15N chemical shift assignments the G4 formed within KRAS22RT sequence.


Asunto(s)
G-Cuádruplex , Resonancia Magnética Nuclear Biomolecular , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Secuencia de Bases , Humanos , Modelos Moleculares , Proto-Oncogenes Mas
10.
Biochimie ; 144: 144-152, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29129745

RESUMEN

KRAS is often found mutated in lethal cancers and should be an important target for anticancer drug development. However, no effective inhibitor has been reported so far, prompting the scientific community to describe the RAS proteins as nearly "undruggable". Recent approaches developed to modulate KRAS protein expression comprises the targeting of G-quadruplex (G4) structures formed within the nuclease hypersensitive element of KRAS promoter region, by designing small and specific ligands to stabilize the tertiary fold and reduce gene expression. In this work, we report in vitro and in silico studies of novel acridine orange (AO) derivatives (C3-C8), developed as G4 stabilizing agents. The results show that the ligands bind with high affinity and stabilize KRAS22-RT G4 with modest specificity over duplex DNA. The most promising ligand C8 stabilizes the structure by ≈ 40 °C. Molecular docking using NMR-derived distance restraints reveal atomic details about the ligand structural features in the interaction with KRAS22-RT G4. In vitro studies with HeLa cells show that the ligands are cytotoxic with IC50 values between 0.9 µM and 5.7 µM. Moreover, the ligands tend to localize in the nucleus as shown by confocal fluorescence microscopy. Overall, these results show that the reported AO ligands display favourable properties as G4 ligands and this study provides structural detail for the development of lead KRAS G4 ligands.


Asunto(s)
Naranja de Acridina/química , Naranja de Acridina/farmacología , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , G-Cuádruplex/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Naranja de Acridina/metabolismo , Transporte Biológico , Proliferación Celular/efectos de los fármacos , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Espacio Intracelular/metabolismo , Ligandos
11.
J Biol Chem ; 292(19): 8082-8091, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28330874

RESUMEN

Non-canonical base pairing within guanine-rich DNA and RNA sequences can produce G-quartets, whose stacking leads to the formation of a G-quadruplex (G4). G4s can coexist with canonical duplex DNA in the human genome and have been suggested to suppress gene transcription, and much attention has therefore focused on studying G4s in promotor regions of disease-related genes. For example, the human KRAS proto-oncogene contains a nuclease-hypersensitive element located upstream of the major transcription start site. The KRAS nuclease-hypersensitive element (NHE) region contains a G-rich element (22RT; 5'-AGGGCGGTGTGGGAATAGGGAA-3') and encompasses a Myc-associated zinc finger-binding site that regulates KRAS transcription. The NEH region therefore has been proposed as a target for new drugs that control KRAS transcription, which requires detailed knowledge of the NHE structure. In this study, we report a high-resolution NMR structure of the G-rich element within the KRAS NHE. We found that the G-rich element forms a parallel structure with three G-quartets connected by a four-nucleotide loop and two short one-nucleotide double-chain reversal loops. In addition, a thymine bulge is found between G8 and G9. The loops of different lengths and the presence of a bulge between the G-quartets are structural elements that potentially can be targeted by small chemical ligands that would further stabilize the structure and interfere or block transcriptional regulators such as Myc-associated zinc finger from accessing their binding sites on the KRAS promoter. In conclusion, our work suggests a possible new route for the development of anticancer agents that could suppress KRAS expression.


Asunto(s)
G-Cuádruplex , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/química , Antineoplásicos/química , Sitios de Unión , Dicroismo Circular , ADN/química , Genes ras , Guanina/química , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Oligonucleótidos/genética , Potasio/química , Proto-Oncogenes Mas , Espectrofotometría Ultravioleta , Temperatura , Zinc/química , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...