Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 44(16): 7944-53, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27378776

RESUMEN

Bacteria encode multiple type II toxin-antitoxin modules that cleave ribosome-bound mRNAs in response to stress. All ribosome-dependent toxin family members structurally characterized to date adopt similar microbial RNase architectures despite possessing low sequence identities. Therefore, determining which residues are catalytically important in this specialized RNase family has been a challenge in the field. Structural studies of RelE and YoeB toxins bound to the ribosome provided significant insights but biochemical experiments with RelE were required to clearly demonstrate which residues are critical for acid-base catalysis of mRNA cleavage. Here, we solved an X-ray crystal structure of the wild-type, ribosome-dependent toxin HigB bound to the ribosome revealing potential catalytic residues proximal to the mRNA substrate. Using cell-based and biochemical assays, we further determined that HigB residues His54, Asp90, Tyr91 and His92 are critical for activity in vivo, while HigB H54A and Y91A variants have the largest effect on mRNA cleavage in vitro Comparison of X-ray crystal structures of two catalytically inactive HigB variants with 70S-HigB bound structures reveal that HigB active site residues undergo conformational rearrangements likely required for recognition of its mRNA substrate. These data support the emerging concept that ribosome-dependent toxins have diverse modes of mRNA recognition.


Asunto(s)
Toxinas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Secuencia de Aminoácidos , Toxinas Bacterianas/química , Cristalografía por Rayos X , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
RNA ; 22(8): 1261-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27307497

RESUMEN

Activation of bacterial toxins during stress results in cleavage of mRNAs in the context of the ribosome. These toxins are thought to function as global translational inhibitors yet recent studies suggest each may have distinct mRNA specificities that result in selective translation for bacterial survival. Here we demonstrate that mRNA in the context of a bacterial 30S subunit is sufficient for ribosome-dependent toxin HigB endonucleolytic activity, suggesting that HigB interferes with the initiation step of translation. We determined the X-ray crystal structure of HigB bound to the 30S, revealing that two solvent-exposed clusters of HigB basic residues directly interact with 30S 16S rRNA helices 18, 30, and 31. We further show that these HigB residues are essential for ribosome recognition and function. Comparison with other ribosome-dependent toxins RelE and YoeB reveals that each interacts with similar features of the 30S aminoacyl (A) site yet does so through presentation of diverse structural motifs.


Asunto(s)
ARN Mensajero/metabolismo , Toxinas Biológicas/metabolismo , Cristalografía por Rayos X , Estructura Molecular , Biosíntesis de Proteínas , Toxinas Biológicas/química
3.
J Biol Chem ; 289(2): 1060-70, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24257752

RESUMEN

Bacterial toxin-antitoxin (TA) systems regulate key cellular processes to promote cell survival during periods of stress. During steady-state cell growth, antitoxins typically interact with their cognate toxins to inhibit activity presumably by preventing substrate recognition. We solved two x-ray crystal structures of the Proteus vulgaris tetrameric HigB-(HigA)2-HigB TA complex and found that, unlike most other TA systems, the antitoxin HigA makes minimal interactions with toxin HigB. HigB adopts a RelE family tertiary fold containing a highly conserved concave surface where we predict its active site is located. HigA does not cover the solvent-exposed HigB active site, suggesting that, in general, toxin inhibition is not solely mediated by active site hindrance by its antitoxin. Each HigA monomer contains a helix-turn-helix motif that binds to its own DNA operator to repress transcription during normal cellular growth. This is distinct from antitoxins belonging to other superfamilies that typically only form DNA-binding motifs upon dimerization. We further show that disruption of the HigB-(HigA)2-HigB tetramer to a HigBA heterodimer ablates operator binding. Taken together, our biochemical and structural studies elucidate the novel molecular details of the HigBA TA system.


Asunto(s)
Antitoxinas/química , Proteínas Bacterianas/química , Complejos Multiproteicos/química , Secuencia de Aminoácidos , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Electroforesis en Gel de Poliacrilamida , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteus vulgaris/genética , Proteus vulgaris/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA