Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(1994): 20222409, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36855872

RESUMEN

The continuity of life and its evolution, we proposed, emerge from an interactive group process manifested in networks of interaction. We term this process survival of the fitted. Here, we reason that survival of the fitted results from a natural computational process we term natural autoencoding. Natural autoencoding works by retaining repeating biological interactions while non-repeatable interactions disappear. (i) We define a species by its species interaction code, which consists of a compact description of the repeating interactions of species organisms with their external and internal environments. Species interaction codes are descriptions recorded in the biological infrastructure that enables repeating interactions. Encoding and decoding are interwoven. (ii) Evolution proceeds by natural autoencoding of sustained changes in species interaction codes. DNA is only one element in natural autoencoding. (iii) Natural autoencoding accounts for the paradox of genome randomization in sexual reproduction-recombined genomes are analogous to the diversified inputs required for artificial autoencoding. The increase in entropy generated by genome randomization compensates for the decrease in entropy generated by organized life. (iv) Natural autoencoding and artificial autoencoding algorithms manifest defined similarities and differences. Recognition of the importance of fittedness could well serve the future of a humanly livable biosphere.


Asunto(s)
Algoritmos , Reconocimiento en Psicología , Reproducción
2.
F1000Res ; 9: 626, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802320

RESUMEN

The evolution of multicellular eukaryotes expresses two sorts of adaptations: local adaptations like fur or feathers, which characterize species in particular environments, and universal adaptations like microbiomes or sexual reproduction, which characterize most multicellulars in any environment. We reason that the mechanisms driving the universal adaptations of multicellulars should themselves be universal, and propose a mechanism based on properties of matter and systems: energy, entropy, and interaction. Energy from the sun, earth and beyond creates new arrangements and interactions. Metabolic networks channel some of this energy to form cooperating, interactive arrangements. Entropy, used here as a term for all forces that dismantle ordered structures (rather than as a physical quantity), acts as a selective force. Entropy selects for arrangements that resist it long enough to replicate, and dismantles those that do not. Interactions, energy-charged and dynamic, restrain entropy and enable survival and propagation of integrated living systems. This fosters survival-of-the-fitted - those entities that resist entropic destruction - and not only of the fittest - the entities with the greatest reproductive success. The "unit" of evolution is not a discrete entity, such as a gene, individual, or species; what evolves are collections of related interactions at multiple scales. Survival-of-the-fitted explains universal adaptations, including resident microbiomes, sexual reproduction, continuous diversification, programmed turnover, seemingly wasteful phenotypes, altruism, co-evolving environmental niches, and advancing complexity. Indeed survival-of-the-fittest may be a particular case of the survival-of-the-fitted mechanism, promoting local adaptations that express reproductive advantages in addition to resisting entropy. Survival-of-the-fitted accounts for phenomena that have been attributed to neutral evolution: in the face of entropy, there is no neutrality; all variations are challenged by ubiquitous energy and entropy, retaining those that are "fit enough". We propose experiments to test predictions of the survival-of-the-fitted theory, and discuss implications for the wellbeing of humans and the biosphere.


Asunto(s)
Adaptación Biológica , Entropía , Reproducción , Animales , Humanos , Redes y Vías Metabólicas , Microbiota , Fenotipo
3.
Proc Natl Acad Sci U S A ; 117(30): 17491-17498, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32694210

RESUMEN

The potential benefits of autonomous systems are obvious. However, there are still major issues to be dealt with before developing such systems becomes a commonplace engineering practice, with accepted and trustworthy deliverables. We argue that a solid, evolving, publicly available, community-controlled foundation for developing next-generation autonomous systems is a must, and term the desired foundation "autonomics." We focus on three main challenges: 1) how to specify autonomous system behavior in the face of unpredictability; 2) how to carry out faithful analysis of system behavior with respect to rich environments that include humans, physical artifacts, and other systems; and 3) how to build such systems by combining executable modeling techniques from software engineering with artificial intelligence and machine learning.


Asunto(s)
Inteligencia Artificial/tendencias , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...