Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0294642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630745

RESUMEN

The Cikijing River is one of the rivers of the Citarik River Basin, which empties into the Citarum River and crosses Bandung Regency and Sumedang Regency, Indonesia. One of the uses of the Cikijing River is as a source of irrigation for rice fields in the Rancaekek area, but the current condition of the water quality of the Cikijing river has decreased, mainly due to the disposal of wastewater from the Rancaekek industrial area which is dominated by industry in the textile and textile products sector. This study aims to determine the potential ecological risks and water quality of the Cikijing River based on the content of heavy metals (Cr, Cu, Pb, and Zn). Sampling was carried out twice, during the dry and rainy seasons at ten different locations. The selection of locations took into account the ease of sampling and distribution of land use. Based on the results of this study, it was found that the water quality of the Cikijing River was classified as good based on the content of heavy metals (Cr, Cu, Pb, and Zn) with a Pollution Index 0.272 (rainy season) and 0.196 (dry season), while for the sediment compartment of the Cikijing River, according to the geoaccumulation index (Igeo) were categorized as unpolluted for heavy metals in rainy and dry seasons Cr (-3.16 and -6.97) < Cu (-0.59 and -1.05), and Pb (-1.68 and -1.91), heavily to very heavily polluted for heavy metals Zn (4.7 and 4.1) . The pollution load index (PLI) shows that the Cikijing River is classified as polluted by several heavy metals with the largest pollution being Zn> Cu > Pb > Cr. Furthermore, the results of the analysis using the Potential Ecological Risk Index (PERI) concluded that the Cikijing River has a mild ecological risk potential in rainy season (93.94) and dry season (96.49). The correlation test results concluded that there was a strong and significant relationship between the concentrations of heavy metals Pb and Zn and total dissolved solids, salinity, and electrical conductivity in the water compartment.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Ríos , Indonesia , Plomo/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/análisis , Calidad del Agua , Metales Pesados/análisis , Medición de Riesgo , China
2.
Heliyon ; 8(7): e09848, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35855995

RESUMEN

Water quality index (WQI) can express overall water quality status in a single term. As such, the application of daily WQI assessment should help the general public be more aware of the condition of the surface water around them. As the longest and biggest river in the West Java Province, the Citarum River plays an important role in the life of the community and ecosystem around it. Therefore, this research evaluated which WQI assessment method was best suited for determining the Citarum River's water quality. We utilized West Java Province monitoring data collected from four monitoring stations along the Upstream Citarum. The WQI was calculated using the National Sanitation Foundation WQI (NSF WQI), Canadian Council of Ministers of the Environment WQI (CCME WQI), and Oregon Water Quality Index (OWQI) assessment methods. Nine years of monitoring data were grouped and analyzed according to wet vs. dry months, wet vs. dry years, monitoring station, and year. Using the NSF WQI assessment method, the Citarum River obtained a 'Fair' and 'Bad' water quality grade with WQI ranging between 38.212 and 60.903 during dry months, 49.089 and 62.348 during wet months, 42.935 and 65.696 during dry years, and 39.002 and 58.898 during wet years. The data ranged from 41.458 and 61.206 from each monitoring station, and between 35.920 and 58.713 for the data from each monitoring year. The CCME WQI assessment method showed that the Citarum River had 'Fair', 'Marginal', and 'Bad' water quality with WQI ranging between 12.683 and 31.503 during dry months, 21.231 and 33.127 during wet months, 12.683 and 31.503 during dry years, 12.134 and 28.748 during wet years, 13.621 and 30.569 for the data from each monitoring station, and 13.219 and 68.808 for the data from each monitoring year. The OWQI assessment method gave the Citarum River a 'Very Bad' water quality rating with WQI ranging between 11.528 and 18.827 during dry months, 13.898 and 24.563 during wet months, 11.528 and 25.782 during dry years, 11.528 and 15.997 during wet years, 11.528 and 18.842 for each monitoring station, and 11.523 and 16.528 for the data from each monitoring year. Based on these results and the collated advantages and disadvantages of each method, the NSF WQI assessment method was deemed to be the best for determining the Citarum River's water quality.

3.
Rev Environ Health ; 29(1-2): 139-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24566355

RESUMEN

Industrial areas are considered to have higher risk of air pollution impact especially to children living close to the industry. Two separate industrial areas in Indonesia were compared. The first location was in the area of coal transportation activity in South Kalimantan, and the second location was in the area of Bogor, West Java where used battery processing industry was often found. Fifty children (boys and girls, aged 6-15 years) were involved in South Kalimantan whereas in West Java there were 48 children (boys and girls, aged 10-12 years) involved. The control groups were also studied in both areas. Predicted average daily intake (ADD) of respirable particulate was estimated and respiratory function was measured using spirometer. The study showed that the PM2.5 concentration in industrial area was 3 times higher than those found in the control location. As a result, the predicted ADD of particulate of children living close to industry in South Kalimantan was 25.45±10.55 µg/kg.day whereas in West Java, the ADD was 1.5 times higher. For both studied area, boys' respirable particulate intake was shown to have higher intake than those in girls. Lung function of children revealed that more than 68% of children in the coal transportation area had decreased pulmonary function. The study also noted that some children in West Java had indicated an obstructive and restrictive respiratory condition. The risk of girls having mild lung disease was found to be 1.3 times greater than those in the control group whereas in boys, the risk was 1.9 times than those in control area. Respiratory function of children in West Java study area was considered to worsen by the higher Pb emission from used battery processing activity.


Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis , Industrias , Adolescente , Niño , Femenino , Humanos , Indonesia/epidemiología , Masculino , Pruebas de Función Respiratoria , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...